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In this paper, we propose a novel metric called MetrIntPair (Metric for Pairwise Intelligence
Comparison of Agent-Based Systems) for comparison of two cooperative multiagent systems
problem-solving intelligence. MetrIntPair is able to make an accurate comparison by taking into
consideration the variability in intelligence in problem-solving. The metric could treat the outlier
intelligence indicators, intelligence measures that are statistically different from those others. For
evaluation of the proposed metric, we realized a case study for two cooperative multiagent systems
applied for solving a class of NP-hard problems. The results of the case study proved that the
small difference in the measured intelligence of the multiagent systems is the consequence of
the variability. There is no statistical difference between the intelligence quotients/level of the
multiagent systems. Both multiagent systems should be classified in the same intelligence class.
C© 2017 Wiley Periodicals, Inc.

1. INTRODUCTION

The agent-based systems represent a relatively new field of Artificial Intel-
ligence appropriate for many problem-solving. In our approach, we will refer to
agent-based systems, agents, and cooperative multiagent systems composed of two
or more agents situated in the same environment that cooperatively solve problems.
Even in cooperating multiagent systems composed of simple agents, an increased
intelligence at the systems’ level could emerge if the member agents cooperate
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efficiently and flexibly. The investigation of aspects that are related to intelligence is
important in order to design highly efficient problem-solving solutions. Intelligent
agent-based systems are used for many difficult problem-solving.1–7

In many studies, the agent-based systems’ intelligence is established based on
some intuitive considerations that are frequently related to the intelligence (learning
and adaptation) of biological life forms (humans, animals, and swarms of insects).
The intelligence estimation based on some intuitive intelligence considerations, as
is realized in most of the studies, is not enough. We consider that innovative metrics
are required for measuring the agent-based systems’ intelligence. There are very few
metrics that are able to measure the intelligence quotient of an agent-based system.
There are even fewer that are able to make an accurate comparison of two agent-
based systems’ intelligence. Another disadvantage of most of the designed metrics
presented in the literature is the limited universality. The same problem could be
solved by agent-based systems with very different architecture. Different studies
related to the machine intelligence quotient (MIQ) measuring were presented in
papers.8–11

There are many studies related to the intelligence of humans.12–16 Based on a
comprehensive study of the scientific literature, we can conclude that a universal
understanding of the human intelligence does not exist. There is no possibility of a
full modeling of the human brain based on its enormous complexity. We considered
that this is somehow similar to the very complex intelligent agent-based systems,
which are much less complex than the humans, but are by a large variety. We
considered appropriate the design of metrics that use problem-solving intelligence
evaluations, which should be similar to the human intelligence measuring, based on
different problem-solving intelligence evaluations.

In the following part of the paper, we will focus on cooperative multiagent
systems intelligence. We propose a novel metric called MetrIntPair (Metric for
Pairwise Intelligence Comparison of Agent-Based Systems) that is able to make an
accurate comparison of the problem-solving intelligence of two cooperative multia-
gent systems. MetrIntPair takes into consideration the variability in the intelligence
of the compared multiagent systems. A multiagent system could manifest differ-
ent intelligence level (quotient) during different problem-solving. Two multiagent
systems, belonging to the same class, with the same measured intelligence using
MetrIntPair can be considered. The metric allows the selection of the cooperative
multiagent systems based on the problem-solving intelligence. In the conclusions
section, we will outline the universality of the proposed metric.

For attesting the effectiveness of the proposed metric, we formulated an illus-
trative case study. We considered two simple cooperative multiagent systems that
are specialized in solving a class of NP-hard problems, specifically the TSP (Trav-
eling Salesman Problem).17–21 The two cooperative multiagent systems performed
as Rank-Based Ant System22,23 and Min-Max Ant System (MMAS),23,24 both are well
known in the scientific literature.

The upcoming part of the paper is organized as follows: Section 2 analyzes the
intelligence of cooperative multiagent systems. There are some metrics presented for
the intelligence measuring. In Section 3, the novel metric MetrIntPair for intelligence
comparison of two cooperative multiagent systems is presented. For validation

International Journal of Intelligent Systems DOI 10.1002/int



METRINTPAIR - MEASURING MACHINE INTELLIGENCE 3

purposes, a case study is presented in Section 4. Section 5 discusses on the proposed
metric. In Section 6, the conclusions of the research are presented.

2. PROBLEM-SOLVING INTELLIGENCE OF THE AGENT-BASED
SYSTEMS

2.1. Definitions of Intelligent Agent-Based Systems

Various studies are focused on the development of intelligent agent-based
systems,25–27 intelligent agents, and intelligent cooperative multiagent systems. The
agent-based systems’ intelligence could not be unanimously defined.25 Mostly, the
intelligence estimation is realized based on some considerations, such as27 au-
tonomous learning, self-adaptation, and long-term evolution. Many considerations
are inspired by different life forms that evolved during more generations, able to
learn during their life cycle, and self-adapt to the environment.

Dastani and Meyer28 analyzed the role of emotions in the design of agents.
They analyzed four types of emotions: fear, happiness, sadness, and anger. These
emotions influence the agents’ goals and the elaboration of plans. In the case of
studied agents, the emotions result during the deliberation process, and they influence
the deliberation process.

Contrary to the static agents, the mobile agents are able to move in the envi-
ronment during the problem-solving process. Mobile agents could be classified as
software mobile agents and robotic mobile agents. A software agent operates in a
software environment, a computer or a computer network. A mobile robotic agent
operates in a physical environment. For instance, we mention a swarm of mobile
robots that are specialized in collecting objects in a physical environment.

To illustrate the impossibility to define the agents’ intelligence, let us consider
the differences in intelligence between static software agents versus mobile software
agents.25 Many mobile agents are more limited in intelligence than the static coun-
terparts. Limitations in the mobile agents’ intelligence are based on some practical
reasons. The endowment of a software agent with intelligence may increase the
agent’s size in terms of code length. Therefore, an intelligent agent (having a more
complex software code, which involves more intense computations) that operates at
a host requires more computational resources. The transmission of a large number
of intelligent mobile agents in a network might overload the network with data
transmission (based on the increased size of the agents). A large number of intelli-
gent mobile agents, which execute complex computations at a host, may overload
that host with computations. The mobile agents migrate during their operation in
a network. Based on this fact, it is difficult to locate where a mobile agent is at a
specific moment of time. This limitation makes difficult the endowment of mobile
agents with communication capability. The communication is an essential property
necessary in the cooperation.

Irani and Rabani29 analyzed the efficiency of cooperative multiagent systems
in problem-solving. In the study, the load balancing and virtual circuit routing
optimization problems were considered. The authors considered the problem input
division among the agents. Irani and Rabani discussed the following main questions:
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“Given a bound on the maximum out-degree in a graph, which is the best graph?”
and “What is the quality of the solution obtained as a function of the maximum
out-degree?”.

Frequently, the scientific literature presents a cooperative multiagent system as
being intelligent based on the simple consideration that the efficient and flexible co-
operation between the member agents emerges in improvement in problem-solving.
Based on this principle, in a cooperative multiagent system, the intelligence could
be considered at the systems’ level.25,27 The intelligence in these systems is higher
than the individual member agents’ intelligence. Even in very simple cooperative
multiagent systems, intelligence could emerge at the systems’ level. By efficient and
flexible cooperation, simple agents could intelligently solve difficult problems.

The study in Ref. 30 presented an intelligent mobile multiagent system com-
posed of simple reactive agents. The mobile agents were specialized in a computer
network administration. They were endowed with knowledge retained as a set of
rules, which described administration tasks. The multiagent system could be consid-
ered intelligent based on the fact that it simulates the behavior of a human network
administrator.

There are many researches31,32 focused on the study of decision taking in the
frame of cooperative coalitions. Decisions taken in the frame of coalitions often
outperform the decisions of individuals who operate in isolation.

Langley et al.26 examined the motivations for research on cognitive architec-
tures. In the above-mentioned paper, the cognitive systems architecture, described
in the scientific literature, were reviewed. The authors discussed some open issues
that should drive the research related to the architecture of cognitive systems. They
considered some important capabilities that a cognitive architecture should sup-
port, which include: organization, performance, and learning, and some theoretical
criteria for making an evaluation at the system’s level.

This section summarized some aspects related to the intelligence of agent-
based systems. Designing intelligent agent-based systems represents very important
research directions for efficient solving of a large variety of problems. Intelligent
agent-based systems are used for many problem-solving.1,3,4,7,33,34 There are many
intelligent computing systems that are agent-based intelligent systems based on their
properties but are not called agent-based systems. The large usage of intelligent
agent-based system motivates the necessity of researches related to the designing of
metrics for measuring their intelligence.

2.2. Metrics for Measuring the Intelligence of Agent-Based Systems

The existence of some properties of the cooperative multiagent systems that
could be associated with the intelligence does not allow a quantitative evaluation;
they just formally prove its existence. We consider that the evaluation of a system’s
intelligence must be based on some metrics that allow the effective measuring
of “quantity of intelligence”-intelligence quotient/level and comparing a system’s
intelligence with the intelligence of another system.

There are some metrics that are designed for making different kinds of mea-
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surements in systems that are considered intelligent. Such metrics are not always
designed for measuring the system’s intelligence as a whole, but for measuring
some aspects that are of most interest. A fault-tolerant system is able to diagnose
and recover from some faults. Sometimes this property of the systems is associated
with the intelligence. Kannan and Parker9 analyzed the fault-tolerant systems in
a comprehensive study. Kannan and Parker9 proposed an effective metric for the
evaluation of fault tolerance.

Schreiner8 presented a study realized by the US National Institute of Stan-
dards and Technology (NIST). The study was related to creating standard measures
for systems that can be considered intelligent. Schreiner8 accentuated the question
related to how precisely intelligent systems can be defined and how to measure
and compare the capabilities that intelligent systems should provide. NIST’s ini-
tial approach for establishing metrics attempts to address different theoretical and
pragmatic subjects.

Fox et al.35 presented a research focused on agents with cognitive capabilities
that can be considered intelligent. They considered the BDI agents (with Belief–
Desire–Intention architecture) very important as a class of cognitive agents. They
designed a benchmark agent model appropriate for comparing agent-based systems.
PROforma is an agent technology for modeling medical expertise. The bench-
mark was realized in order to carry out a case study analysis of this technology.
It was analyzed based on three points of view: object-oriented programming, logic
programming, and agent-oriented programming. The strengths and weaknesses of
PROforma were analyzed.

Chmait et al.36 studied the intelligence of multiagent systems. They considered
that the intelligence is influenced by the communication and observation abilities of
the member agents. The authors formulated the research question, “Which factor has
a more significant influence?”. The solving of the research question was approached
by using an information-theoretical approach. Using some tests collaborative agents
across different communication and observation abilities were compared. Based on
the obtained results, Chmait et al.36 formulated the conclusion that the effectiveness
of multiagent systems with low observation/perception abilities can be significantly
improved by making the communication more efficient. They presented some situa-
tions where these assumptions were not verified, and also analyzed the dependency
between the studied factors.

Anthon and Jannett10 considered the agent-based systems’ intelligence based
on the ability to compare alternatives with different complexity. In their research, an
agent-based distributed sensor network system was considered. For measuring the
intelligence, a specific approach was applied. The proposal was tested by comparing
the MIQ on different agent-based scenarios.

Hibbard11 proposed a metric for intelligence measuring based on a hierarchy
of sets of increasingly difficult environments. An agent’s intelligence was measured
according to the ordinal of the most difficult set of environments that it can pass. The
proposed measure was defined in Turing machine and finite state machine models
of computing. In the finite model, the measure includes the number of time steps
required to pass the test.

Chmait et al.37 presented an interesting study related to the intelligence of agent
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coalitions/groups. It proposed a metric considered “universal” and appropriate to
empirically measure intelligence for different agents. The effectiveness of various
algorithms was evaluated on a per-agent basis over a selection of tasks by different
complexities. The study presented different situations over which a cooperative
multiagent system can be more intelligent than others. It discussed some of the
factors in influencing the collective intelligence.

Legg and Hutter38 proposed a formal measure for intelligence. The authors
considered that the performance in easy environments counts less toward an agent’s
intelligence that does performance in difficult environments.

An interesting study related to the intelligence of computing systems was
realized by Legg and Hutter.39 They considered that a fundamental problem in AI is
that the notion of intelligence cannot be uniquely defined. Based on the researchers’
affirmation, “nobody really knows what intelligence is.” Legg and Hutter39 outlined
that the artificial systems are significantly different from humans. In the presented
research, some given definitions to the human intelligence were considered. Based on
these considerations, they established some essential features. These features were
mathematically formalized in order to produce a general measure of intelligence for
arbitrary machines. The objective was to capture the concept of machine intelligence.
In the study, a survey of other tests and definitions of the machine intelligence was
also realized. We fully agree with Legg and Hutter in relation to the intelligence of
computing systems that cannot be defined uniquely. The evolution of life on earth
began 0.5 billion of years ago.40 The advances in technology and computing systems
(software/hardware) are very fast, but will take a very long time until the computing
system will have the complexity and intelligence of the most advanced life forms
on earth.

Hibbard41 proved that a constraint on universal Turing machines is necessary
for Legg’s and Hutter’s formal measure of intelligence to be unbiased. The measure
proposed by Legg and Hutter, defined in terms of Turing machines, is adapted to
finite state machines. A No Free Lunch result is proved for the finite version of the
measure.

Legg and Veness42 analyzed the formal definition of machine intelligence
called Universal Intelligence Measure (UIM) based on Hutter’s Universal Arti-
ficial Intelligence theory. It is an extension of Ray Solomonoff’s work called
universal induction.43–45 Legg and Veness considered that the UIM is asymptot-
ically computable, and building a practical intelligence test based on this principle
is not appropriate based on applicative considerations. Legg and Veness studied
some practical issues involved in developing an applicable UIM. They developed
a prototype implementation that was used in order to evaluate different artificial
agents.

In Ref. 46, the collective intelligence of particle swarm system was assessed
according to a proposed Maturity Model. The proposed model was based on the
Maturity Model of C2 (Command and Control) operational space and the model of
Collaborating Software. The main aim of the study was to obtain a more thorough
explanation of how the intelligent behavior of the particle swarm emerges.

In Ref. 47, the idea of a general test called universal anytime intelligence
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test was proposed. The authors of the study considered that such a test should be
able to measure the intelligence level (any low or any high) of any biological or
artificial system. It was based on the C-tests and compression-enhanced Turing tests
developed in the late 1990s. The authors of the research discussed different tests by
highlighting their limitations. They introduced some new ideas that were considered
necessary for the development of a universal intelligence test.

Some research efforts related to measuring the machine intelligence are focused
on the elaboration of intelligence testing frameworks. Chmait et al.48 in recent studies
elaborated some dynamic intelligence tests for measuring the collective intelligence.
The work in Ref. 48 presented a technical description of a testing framework, design,
and implementation. It was presented how it can be used to quantitatively evaluate
the machine intelligence. Alternative testing environments were discussed in that
study.

We would like to note here that the analysis of the necessary intelligence is
an important aspect that should be treated in this topic during the development of
intelligent systems. This is important because sometimes an increased intelligence
may even have disadvantages. For instance, if we were to consider an extremely
intelligent agent as one that uses complex specializations for processing, but solves
very simple problems, it would probably have to make considerably more complex
computations (e.g., verification of numerous conditions) than would actually be
necessary.

In very few papers, some evaluations or analysis of the system’s intelligence
are discussed. Most of the metrics described in the scientific literature are de-
signed for making different kinds of measurements in systems that are considered
to be intelligent. Some metrics are not developed for measuring the systems in-
telligence as a whole, but only for measuring some aspects that represent interest.
There are very few designed metrics that are able to make an effective comparison
of more multiagent systems intelligence. Many designed metrics are dependent on
some aspects, such as the member agents’ architecture, the multiagent system archi-
tecture, and so on. Based on this fact, their effective practical utilization possibility
is limited. An agent-based system for solving the same type of problems could have
different architecture.

These considerations motivate the necessity to design metrics that are able
to make an accurate comparison of the intelligence of more multiagent systems
based on different problem-solving intelligence measurements. We consider that
such a metric must be universal and should not depend on some relatively particular
aspects like the agent-based systems’ architecture. In the discussion section, we will
compare our proposed metric with some other metrics presented in the scientific
literature.

3. THE PROPOSED METRINTPAIR METRIC FOR COMPARISON OF
TWO MULTIAGENT SYSTEMS INTELLIGENCE

In this section, we propose a novel metric for the accurate comparison of the
problem-solving intelligence of two cooperative multiagent systems. The metric is
described as an algorithm, which is further called Multiagent Systems Intelligence
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Comparison. The metric is abbreviated as MetrIntPair.
Next, we consider two cooperative MAS denoted as MAS1 and MAS2 that

can solve the same types/classes of problems. We consider the intelligence testing
of MAS1 and MAS2 on the same set of test problems denoted Prob = {Prob1,
Prob2, . . . , Probn}. The obtained intelligence indicators, as a result of problem-
solving intelligence evaluations, are denoted as Set1 = {A1t1, A1t2, . . . , A1tn} and
Set2 = {A2t1, A2t2, . . . , A2tn}. |Set1| and |Set2| represent the cardinality/sample
size of Set1 and Set2, where |Set1| = |Set2| = n. Table I presents the experimen-
tal conditions for the intelligence measuring, the problems and the corresponding
measured intelligence indicator results for both MASs. A1t1, A1t2 . . . A1tn repre-
sents the intelligence of the MAS1; where A1t1 represents measured intelligence in
the Prob1 solving, . . . , A1tn represents the measured intelligence in Probn solving.
A2t1, A2t2, . . . , A2tn represents the intelligence of the MAS2; where A2t1 represents
the measured intelligence in the Prob1 solving, . . . , A2tn represents the measured
intelligence in the Probn solving.

Table I. Pairwise measuring of MAS1 and MAS2 intelligence.

Problem used in
intelligence testing

Intelligence
evaluation of MAS1

Intelligence
evaluation of MAS2 Formed pairs

Prob1 A1t1 A2t1 A1t1-A2t1
Prob2 A1t2 A2t2 A1t2-A2t2
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
Probn A1tn A2tn A1tn-A2tn

CentrInt1 of Set1 CentrInt2 of Set2

CentrInt1 and CentrInt2 represent the central intelligence indicators of the
MAS1 and MAS2. We considered as the central intelligence indicators of MAS1
and MAS2 the means of Set1 and Set2; CentrInt1 = Average(A1t1, A1t2, . . . ,
A1tn), CentrInt2 = Average(A2t1, A2t2, . . . , A2tn). The decision for choosing
the mean as the central intelligence indicator was based on the fact that both
data samples should be normally distributed, sampled from a Gaussian popula-
tion. If the intelligence indicators data are not normal then a transformation can be
applied.

The MetrIntPair metric compares the intelligence of MAS1 and MAS2 on
a testing problem set Prob. It checks if the results (more concretely the central
intelligence indicators) are equal or different from the statistical point of view. We
call in the following, Null Hypothesis denoted as H0, the statement that MAS1 and
MAS2 intelligence are equal from the statistical point of view. We denote H1 the
Alternative Hypothesis, a hypothesis which indicates that the intelligence of MAS1
and MAS2 is different from the statistical point of view.

MetrIntPair Metric: Multiagent Systems Intelligence Comparison Algorithm

IN: Set1 = {A1t1, A1t2, . . . , A1tn}; Set2 = {A2t1, A2t2, . . . , A2tn}
OUT: //The established Central Intelligence Indicators of MAS1 and MAS2.
//The established Central Intelligence Indicator of MAS1
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CentrInt1, [LowerCI1,UpperCI1]; CentrInt2, [LowerCI2, UpperCI2];
//The established Central Intelligence Indicator of MAS2
CentrInt2, [LowerCI2, UpperCI2]
//The decision related with the intelligence comparison of MAS1 and MAS2
DecisionIntelligence

Step 1.
@Establishes the α_metr parameter value.
@Make a statistical characterization for Set1 and Set2.
@Calculate the CV (Coefficient of Variation) for both Set1 and Set2.
@Analyze the heterogeneity of Set1 and Set2 based on the CV value.
@Verify if Set1 and Set2 are normally distributed.
@If decided opt for the outlier intelligence values detection from Set1 and Set2.
If (it was applied the intelligence indicators outliers detection) then

@Eliminates the outliers.
@Verify again if Set1 and Set2 are normally distributed.

EndIf
@If Set1 or Set2 are NOT normally distributed then apply a transformation.

Step 2.
If (both Set1 and Set2 are normally distributed) then

//The central intelligence indicators are calculated as the means.
@Calculates CentrInt1 and CentrInt2 as the means of Set1 and Set2.
@Set ConfLev. //Set the confidence level of the confidence interval.
//establishes the confidence level of the confidence interval.
@Establishes the ConfLev.
//Calculate the confidence interval for the central intelligence indicators.
@Calculate LowerCI1, UpperCI1; LowerCI2, UpperCI2.
@Apply the parametric Paired Two-Sample T-test.
@As a test result will be obtained the P-value.
@Verify if the Pairing was Effective.

EndIf
Step 3.

@Report CentrInt1, [LowerCI1, UpperCI1]; CentrInt2, [LowerCI2, UpperCI2].
Step 4.

If (P-value> α_metr) then
@Accept H0.
DecisionIntelligence = “MAS1 intelligence is equal with MAS2 intelligence”.
Else
@Accept H1. //H0 is rejected.
If (CentrInt1< CentrInt2) then
DecisionIntelligence = “MAS1 is less intelligent than MAS2”
Else
DecisionIntelligence = “MAS1 is more intelligent than MAS2”
EndIf
EndMultiagentSystemsIntelligenceComparison

The metric used as input Set1 = {A1t1, A1t2, . . . , A1tn} and Set2 = {A2t1,
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A2t2, . . . , A2tn} represent the MAS1 and MAS2 intelligence indicators obtained
during the MASs evaluation in solving of the test problems set Prob. |Prob| = cardi-
nality/number of problems (intelligence evaluations). The metric algorithm could be
applied to a Gaussian intelligence indicator data (Set1 and Set2 should be sampled
from a Gaussian population) and also it should satisfy the restriction related to the
effectiveness of data pairing by a correlation and regression analysis.

If the sample intelligence data do not follow a Gaussian distribution, a solution
is the application of a transformation to the values in order to obtain normally
distributed data. This is required for the application of the proposed metric. Some of
the most common normalizing transformations based on applicative considerations
are indicated in Table II.49

Table II. Transformation that can be applied to obtain normally distributed data.

Type of data and distribution Normalizing transformation

Count (C comes from Poisson distribution) Square root of C
Proportion (P comes from Binomial distribution) Arcsine of square root of P
Measurement (M comes from Lognormal distribution) Log(M)

CV should be calculated using Equation 1. In Equation 1, the Standard Devi-
ation (SD)/Mean is multiplied with 100 for finding the result in percent (%). For
example, if SD/Mean = 0.2 multiplied by 100 gives 20%.

CV = 100 × (SD/Mean). (1)

We used the CV value for analyzing the homogeneity/heterogeneity of the intelli-
gence indicator data. A classification of the homogeneity–heterogeneity of the data
can be realized based on the CV.50,51 CV � [0,10] indicates homogeneous data;
CV � (10,30) indicates relatively homogeneous data; CV � 30 indicates heteroge-
neous data.

In our study, we used a method for the elimination of outlier intelligence
indicator values. We call outlier intelligence indicator value, a very high or very
low measured intelligence value, different from the other intelligence indicator
values. We consider that the difference of an intelligence indicator value from those
others should be considered from the statistical point of view. Based on this fact,
we determined that the application of statistical tests for outlier intelligence values
detection is suitable. There are many tests for statistical outliers’ detection described
in the scientific literature, such as Chauvenet’s criterion,52,53 Peirce’s criterion,54

Dixon’s Q test,55 and Grubbs test.56

We suggest the application of the Grubbs test for outliers detection with the
significance level α_grubbs = 0.05. At the first application of the Grubbs test, it is
able to identify a single outlier (if there is at least one outlier). If a value is identified
as an outlier, then it can be concluded that this is the most statistically different value
of all other measured intelligence indicator values. If it is identified as an outlier,
then a decision can be taken regarding if the outliers detection test will be applied
again. This is a recursive process; the detection could be applied consecutively more
times until there are no other outliers detected.
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The decision related with the outliers’ elimination, if outliers appear, should be
taken by the human evaluator based on a pre-analysis and realized before applying
the metric. Possible decisions could be:

� the outliers should be taken into consideration based on the fact that they are characteristic
to the intelligence. It is expected to have a large variation in intelligence, for example,
there are solved problems by a larger variety of types and/or complexity;

� the outliers should not be taken into consideration. They indicate some situations that do
not characterize the intelligence. For example, the agents are overloaded with tasks and
they could solve problems very slowly, and such a situation is very rare.

α_metr denotes the significance levels when the statistical parametric Paired
Two Sample T-test is applied. We suggest as the value of α_metr = 0.05, which we
consider as the most appropriate. α_metr denotes the probability to make a type I
error, to reject H0 (Null Hypothesis) when it is true. Df(set1,set2) = n − 1 denotes
the degrees of freedom for the Paired Two Sample T-test. ConfLev represents the
confidence level of the central intelligence indicators. In many cases, we recommend
a value of 95%.

In the proposed metric algorithm, if P-Value > α_metr, then it can be concluded
that H0 could be accepted. Based on the decision, it can formulate the conclusion
that even if there is a numerical difference between the calculated central intelligence
indicators of CentrInt1 and CentrInt2, there is no statistical difference between the
intelligence of the two multiagent systems. The numerical difference is the result of
an accident and/or the variability in the intelligence of the multiagent systems. In
this situation, from the classification point of view, both multiagent systems MAS1
and MAS2 can be classified in the same intelligence class.

If H1 is accepted, then it can be concluded that the intelligence level of MAS1
is different from the intelligence level of MAS2. The numerical difference between
the central intelligence indicators CentrInt1 and CentrInt2 is statistically significant
and it is not the consequence of an accident/variability. From the classification
point of view, MAS1 and MAS2 cannot be classified in the same intelligence class.
If CentrInt1<CentrInt2, then the conclusion is that MAS1 is less intelligent than
MAS2. If CentrInt1>CentrInt2, then the conclusion is that MAS1 is more intelligent
than MAS2.

4. CASE STUDY FOR COMPARISON OF TWO MULTIAGENT
SYSTEMS’ INTELLIGENCE

For the validation of the proposed MetrIntPair metric, we designed a case
study in order to prove its effectiveness. Here, we will investigate the comparison of
two cooperative multiagent systems intelligence denoted MAS1 and MAS2, formed
of mobile agents. By mobile agents we understand simple computing agents able
to move in the environment during the problem-solving. As the agents operate,
the environment is constituted by a graph of connected nodes. An agent is able to
move from one node to another. In each multiagent system, the agents cooperate
in order to efficiently solve the undertaken problem by the multiagent system. The
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communication of the agents is very simple by using signs. It is similar to the
communication of the natural ants by using pheromones.

4.1. Presentation of the Studied Multiagent Systems

For validation purpose of the proposed metric, we realized experimental eval-
uations of more cooperative multiagent systems composed of simple cooperating
agents applied for the TSP solving. We experimented: Ant System, Elitist Ant Sys-
tem, Ranked Ant System, Best-Worst Ant System, Min-Max Ant System, and Ant
Colony System. Finally, we decided to present the validation for two cooperative
multiagent systems whose central intelligence indicators as the numerical value is
almost equal. We considered two multiagent systems composed of simple cooper-
ating agents that mimic the behavior of natural ants. The ability of natural ants to
determine the shortest paths between the nest and the food source was investigated
in many studies.57,58 Individual ant possesses few capabilities, but by operating in
swarms/colonies, the ants are capable of a complex surviving behavior. Natural ants
use chemical pheromones to communicate with each other, this allows the finding of
the shortest trail between food sources and their nests. All of the ants that search for
food deposit pheromone on the trail while walking. Each ant follows the pheromone
trails that it meets with some probability, which is proportioned to the density of the
pheromone. More ants walk on a trail, the more pheromone is deposited on it and
more and more ants follow that trail. Based on this collaboration mechanism, it is a
very high probability for the ants to find a short path. The obtaining of the shortest
path, the optimal solution, is not guaranteed.

Marco Dorigo in the year 1992 in his Ph.D. thesis59,60 firstly proposed that
the problem-solving based on simple computing agents that mimic the operation
of natural ants. Artificial ants (operate as reactive agents known in the intelli-
gent agent literature) imitate the behavior of natural ants when they search for the
food.

In an Ant System, initially, each agent (artificial ant) is placed on some randomly
chosen city (node in the graph). An agent k currently at a node i choose to move
to node j by applying the following probabilistic transition rule (Equation 2). After
each agent completes its tour, the pheromone amount on each path will be adjusted
according to Equation 3.

pk
ij (t) =

⎧⎨
⎩

[τij (t)]α ·[ηij ]β∑
l∈Jk (i)

[τil (t)]α ·[ηil ]β
if j ∈ Jk(i)

0 otherwise
(2)

τij (t + 1) = (1 − ρ) · τij (t) + �τij (t)

�τij (t) =
m∑

k=1
�τk

ij (t)

�τk
ij (t) =

{
Q
Lk

if(i, j ) ∈ tour done by agent k
0 otherwise

(3)
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In Equations 2 and 3, following notations are used: α and β are adjustable
parameters. α and β control the relative weights of the heuristic visibility and the
pheromone trail. In the parameters establishment, a trade-off between edge length
and pheromone intensity appears to be necessary. Q denotes an arbitrary constant.
dk,h represents the distance between the nodes (k and h); ηkh = 1/dk,h is the heuristic
visibility of edge (k,h). 1 − ρ is the pheromone decay parameter, 0 < ρ < 1, it
represents the trail evaporation when the agent chooses a node to decide where to
move. m denotes the number of agents, Lk denotes the length of the tour performed
by the agent k.

In our experimental setup, MAS1 operated as a Rank-Based Ant System22,23 and
MAS2 operated as a MMAS.23,24 Rank-Based Ant System and MMAS are well-known
ant systems described in the scientific literature.

Rank-Based Ant System and MMAS have been applied for many problem-
solving. Pérez-Delgado’s paper61 presents a solution for the Undirected Rural Post-
man Problem based on a Rank-Based Ant System. Thilagavathi and Amudha62

present a solution for the 2D-HP Protein Folding using a Rank-Based Ant Algo-
rithm. Stützle 63 proposes a solution for the quadratic assignment problem-solving
using a MMAS.

We applied MAS1 and MAS2 for a class of NP-hard problem, TSP solving. TSP
remains one of the most challenging problems in operational research.17–20 TSP can
be defined as follows: given M cities, a salesman starts from a given node, should
visit each node exactly one time and then returns home. He/she would like that the
total distances (cost) traveled to be minimal (the smallest in one of the terms like:
distance, time, money, or energy).

4.2. MAS1—The Rank-Based Ant System

In the Rank-Based Ant System,22,23 the obtained solutions are ranked according
to their length. The amount of deposited pheromone is then weighted for each
solution. However, solutions with shorter paths deposit more pheromones than
the solutions with longer paths. The difference from the traditional ant colony
optimization algorithm is the pheromone update. For each of iterations, the best to
date agent and additionally the w − 1 best agents for this iteration are selected. The
best to date and each of the selected ranked agents deposit pheromone on the paths
they travel:

τij (t + 1) = τij (t) · (1 − ρ) +
r=w−1∑

r=1
e·(w − r) · �τ

r

ij (t) + e · w · �τ
bs

ij (t)

�τr
ij (t) = Q

Lr

(4)

In Equation 4, the following notations are used: e is an additional multiplier,
e � 1; Q denotes a constant; Lr denotes the length of the rth agent trip; bs denotes
the agent with the best to date trip; �τ ij

bs(t) = Q/Lbs if the path ij�Tbs, Tbs is the
selected best to date agent’s round trip; Lbs is the length of the selected trip.
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4.3. MAS2—Min-Max Ant System

MMAS23,24 is an Ant Colony Optimization algorithm, a variant of the Ant Sys-
tem. MMAS differs from Ant System in some aspects. An MMAS gives dynamically
evolving bounds on the pheromone trail intensities; this is made in such a way that
the pheromone intensity on all the paths is always within a specified limit of the
path with the greatest pheromone intensity. All the paths will have permanently a
non-trivial probability of being selected. This way a wider exploration of the search
space is assured. MMAS uses lower and upper pheromone bounds to ensure that
all of the pheromone intensities are between the two bounds (lower and upper).
In MMAS, the solution construction is according to Equation 2. There are variants
in the selection of the agents that are allowed to update pheromones: the best for
current iteration or best to date agent or the best after latest reset agent or the best to
date agent for even (or odd) iterations. There are minimal and maximal pheromone
limits to the quantity of pheromone on the paths between cities, denoted as τmin

and τmax. The evaporation on the graph can be expressed as Equation 5. Equation 6
denotes the pheromone update based on the selected agent’s round trip:

τij (t) = max((1 − ρ) · τij (t), τmin) (5)

τij (t + 1) = min(τij (t) + �τbs
ij (t), τmax) (6)

where �τ ij
bs(t) = Q/Lbs if the path ij�Tbs, Tbs is the selected best to date agent’s

round trip. Lbs is the length of the trip. It was used for initiation τ 0 = 1/number of
cities.

4.4. Experimental Results

In the experimental setup, we considered maps composed of 30 randomly
placed cities (nr = 30). Based on some preliminary empirical evaluations, we
established some parameter values as the most appropriate. The parameters of both
multiagent systems MAS1 and MAS2 were considered: number of steps = 1200;
|MAS1| = 10 the cardinality of MAS1, the number of agents of MAS1; |MAS2| = 10
the cardinality of MAS2. α = 1.738, the power of the pheromone; β = 2.085, the
power of the distance/edge weight; and evaporation = 0.163, the evaporation factor.

|Prob| = 41, where 41 represents the number of experimental intelligence
evaluations for both MASs. This sample size, Total sample size = 41, can be obtained
based on a calculus that compute the required sample size based on the given
α_metr, β_metr, Power (1-β_metr), effect size, and number of tails (one or two).
We considered α_metr = 0.05, β_metr = 0.05, Power = 1 − β_metr = 0.95, Effect
size dz = 0.58. We considered the case of the two-tailed test. Other outputs of
the realized calculus are the Noncentrality parameter δ = 3.7138121 and Critical
T = 2.0210754.

Table III presents the obtained intelligence evaluation results for MAS1 and
MAS2. It was considered in both MAS as the intelligence indicator that obtained best
to date travel value from the beginning of the problem-solving.
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Table III. Results of the intelligence evaluation of MAS1 and MAS2.

Rank-Based Ant System (MAS1)/Set1 Min-Max Ant System (MAS2)/Set2

*,#(Pr1)3.752; #(Pr2)5.442; (Pr3)6.106;
#,*(Pr4)4.513; (Pr5)7.084; (Pr6)6.012; (Pr7)6.931;
(Pr8)6.068; (Pr9)6.548; (Pr10)6.076; (Pr11)6.345;
(Pr12)6.73; (Pr13)6.595; (Pr14)7.028; (Pr15)6.393;
(Pr16)7.263; (Pr17)6.28; (Pr18)7.096; (Pr19)6.212;
(Pr20)6.373; (Pr21)7.672; (Pr22)7.888; (Pr23)6.259;
(Pr24)6.606; (Pr25)6.39; (Pr26)6.579; (Pr27)6.828;
(Pr28)6.932; (Pr29)6.364; (Pr30)6.488;
(Pr31)6.553; (Pr32)6.632; (Pr33)7.61; (Pr34)6.922;
(Pr35)7.215; (Pr36)6.935; (Pr37)7.196; (Pr38)5.75;
(Pr39)6.78; (Pr40)7.122; (Pr41)6.926

#(Pr1)4.159; #,**(Pr2)4.717; (Pr3)6.579;
#(Pr4)6.189; (Pr5)6.831; (Pr6)5.707; (Pr7)6.104;
(Pr8)5.636; (Pr9)6.584; (Pr10)6.032;
(Pr11)6.924; (Pr12)6.184; (Pr13)6.231;
(Pr14)7.448; (Pr15)7.014; (Pr16)7.076;
(Pr17)6.817; (Pr18)6.787; (Pr19)7.301;
(Pr20)7.344; (Pr21)7.267; (Pr22)6.968;
(Pr23)6.182; (Pr24)6.535; (Pr25)6.683;
(Pr26)6.744; (Pr27)6.328; (Pr28)7.064;
(Pr29)6.961; (Pr30)7.119; (Pr31)5.985;
(Pr32)6.657; (Pr33)7.245; (Pr34)6.566;
(Pr35)6.787; (Pr36)7.15; (Pr37)6.908;
(Pr38)7.19; (Pr39)6.292; (Pr40)6.555;
(Pr41)7.232

*Indicates an identified outlier in Set1.
#Indicates a value that is eliminated.
**Indicates an identified outlier in Set2.

In the case of the proposed metric, the selection of the intelligence indicator
is the responsibility of the human evaluator who wishes to compare the problem-
solving intelligence of the considered multiagent systems. He/she should choose
it based on what could indicate the intelligence. An intelligence indicator value if
necessary can be computed as a weighted sum of some other values that measure
different aspects of a system’s intelligence. In most of the studies, swarm systems
that operate as ant colonies are considered intelligent. As human evaluators of the
intelligence, we have considered the most representative global best as indicator of
the intelligence.

Figure 1 contains the graphical representation of the intelligence indicators
with all included measured intelligence data. The outlier intelligence values are not
eliminated. Figure 1 illustrates the variability in intelligence of MAS1 and MAS2.

Based on the MetrIntPair algorithm, as the first step indicated, it was realized
a descriptive statistics16,64 by computing the values for the Mean, Standard Error,
Median, SD, Sample Variance, Min, Max, Lower CI, Upper CI, and CV. As Confi-
dence Level of the mean in most of the cases, we propose the sellection of 95.0%;
or expressed as significance level α = 0.05. Table IV presents the results of the
descriptive statistics realized for the Set1 and Set2.

The data normality of Set1 and Set2 was verified with the Kolmogorov–
Smirnov Goodness-of-Fit Test.65 We chose to apply it at significance level
α_kolmogorov = 0.05. The results of the normality test are presented in Table IV.
The test results show that none of the intelligence indicator data (Set1 and Set2)
passed the normality test. The results indicate a moderate relatively homogeneous
intelligence indicators data set.

Based on these obtained results, it was decided to search for outlier intelli-
gence values. We chose to apply the Grubbs test for outliers’ detection.56 At the
first step, we applied the Grubbs test for the Set1 data. The test identified the
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Table IV. Statistical analysis of the measured intelligence indicators.

Rank-Based Ant System/MAS1 Min-Max Ant System/MAS2

Mean/[Lower CI 95%,Upper CI 95%] 6.5486341463/[6.310, 6.787] 6.5873658537/[6.374, 6.8]
SD/Standard Error/Variance 0.7549/0.1179/0.5699 0.675/0.1054/0.4456
CV/Interpretation 11.53/relatively homogeneous 10.2/relatively homogeneous
Sample Size 41 41
Median/Minimum/Maximum 6.595/3.752/7.888 6.744/4.159/7.448
K-S Statistic/P-value/Passed 0.141/0.0391/NO 0.152/0.0181/NO

corresponding intelligence value in Set1 to Pr1 was 3.752 (indicated with * in
Table III), Set1 = Set1-{3.752}. Based on the data pairing property, we decided
also to eliminate the value 4.159 from the same position from Set2(corresponding
to Pr1), Set2 = Set2-{4.159}. We applied the test again for the new Set1 and it iden-
tified a second outlier value in Set1 corresponding to Pr4, Set1 = Set1-{4.513}. We
eliminated the corresponding value 6.189 from Set2 to Pr4, Set2 = Set2-{6.189}.
After this step, no other outlier in the remaining Set1 was identified. We applied the
Grubbs test in the Set1 for the third time but no other outlier was detected.

On the remaining data from Set2, we applied the Grubbs test. An intelligence
indicator value as an outlier that corresponds to Pr2, 4.717, Set2 = Set2-{4.717}
was detected. Based on the data pairing, we eliminated the intelligence value 5.442
from Set1 also, Set1 = Set1-{5.442}. We applied the Grubbs test again for Set2 but
no other outlier was detected.

Figure 2 contains the graphical representation of intelligence indicators Set1
and Set2 obtained after the elimination of outlier intelligence values. Applying
the outliers test, the sample size of both sets Set1 and Set2 was reduced to 38 (38
intelligence indicator measurements for both MASs). This sample size, Total sample
size = 38, can be obtained based on a calculus that compute the required sample size
based on the given α_metr, β_metr, Power = 1 −0 β_metr, effect size, and number
of tails (one or two). We chose the following values: α_metr = 0.05, β_metr = 0.05,
Power = 1 − β_metr = 0.95, Effect size dz = 0.605. We considered the case
of the two-tailed test. Other outputs of the realized calculus are the Noncentrality
parameter δ = 3.7294705 and Critical T = 2.0261925.

The obtained results presented in Table V shows that both intelligence data sets
Set1 and Set2 obtained after the elimination of outliers passed the normality test.
Further, the proposed MetrIntPair metric can be applied. The Two Sample t-test was
applied for paired data.66 We considered the significance level α_metr = 0.05. The
obtained values were P-value = 0.9456, T = 0.06872, and degrees of freedom = 37.
Based on the fact that P-value > α_metr, it can be decided that MAS1 and MAS2
intelligence is the same (there is no statistical difference between them).

We verified the assumption that the pairing was effective, according to the
indication from the algorithm. This was verified by checking the existence of a
linear correlation. Based on the normality of data sets Set1 and Set2 (data sampled
from a Gaussian population), we considered the calculation of Pearson Coefficient
of Correlation67–69 denoted with r as the most appropriate. |Set1| = |Set2| = 38.
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Table V. Statistical analysis on the measured intelligence indicators after the elimination of
outlier intelligence indicators.

Rank-Based Ant System/MAS1 Min-Max Ant System/MAS2

Mean/[Lower CI 95%, Upper CI 95%] 6.7049210526 [6.546, 6.864] 6.7109736842 [6.557, 6.865]
SD/Standard Error/Variance 0.4843/0.07857/0.2345 0.4676/0.07586/0.2186
CV/Interpretation 7.22/Homogeneouse data 6.97/Homogeneous data
Sample Size 38 38
Median/Minimum/Maximum 6.619/5.750/7.888 6.787/5.636/7.448
Normality Test KS/P Value/Passed 0.08615/>0.10/YES 0.09089/>0.10/YES

r = 0.3498 suggests the existence of positive correlation. As 95% CI for the cor-
relation coefficient was obtained as [0.03384, 0.5022]. The obtained Coefficient of
Determination was r2 = 0.1224. The Coefficient of Determination70 is a number that
indicates the proportion of the variance in a variable (can be called dependent—in
our case study is Set2) that is predictable from the other variable (can be called
independent—in our case study is Set1).

We applied a statistical test for the verification if r is statistically different
from 0, verifying the hypothesis if a positive correlation exists. We have considered
the significance level α_cor = 0.05. The result of the test was P-value = 0.0313,
P-value < α_cor, which indicated a statistical difference.

5. DISCUSSIONS

We consider that it is impossible to give a general, unanimously accepted
definition to the agent-based systems’ (agents or cooperative multiagent systems)
intelligence. Many definitions of agent’s intelligence presented in the scientific lit-
erature are based on some biological considerations, such as autonomous learning,
self-adaptation, or natural evolution realized during more generations. In a coop-
erative multiagent system, the intelligence can be considered at the system’s level.
Many studies proved that even very simple, efficiently and flexibly cooperating
agents could form an intelligent multiagent system in that the intelligence emerges
at the system’s level.

There is not enough to formulate a general definition of cooperative multia-
gent system’s intelligence supported only by some intuitive biologically inspired
considerations. We consider that innovative metrics should be developed for an ac-
curate measuring of a cooperative multiagent system’s intelligence and for further
comparisons with the intelligence of another multiagent system.

Our MetrIntPair metric is appropriate for multiagent systems, where the intel-
ligence indicator for a problem-solving by the system can be expressed as a single
value. This value can be computed as a weighted sum of some other values that
measure different aspects of the system’s intelligence.

The elaborated metric takes into consideration the variability in the intelligence
of the compared multiagent systems. A multiagent system could have different
intelligent reactions in different situations. In a specific situation, the reaction could
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be more or less intelligent. In our research, we considered the outlier intelligence
values, too high or too low intelligence values. They are much more different from
the other intelligence values and if are taken into consideration, they could influence
the measured MIQ.

For our metric, we considered important that the intelligence sample indicators
data to be normally distributed. If the data is normally distributed then the mean
should be chosen as a representative statistical indicator of the central intelligence
tendency. The metric algorithm verifies the data normality. If the intelligence indi-
cator data sets Set1 and Set2 are not normally distributed then a transformation is
recommended (see Table V), or the opting for the elimination of outlier intelligence
values.

In the paper [71] a metric called MetrIntComp for comparison of two cooper-
ative multiagent system’s intelligence is proposed. Both metrics MetrIntComp and
MetrIntPair are based on the similar principle of difficult problem-solving intel-
ligence measuring and classification in intelligence classes. The effectiveness of
the metric MetrIntComp is proved by a case study. MetrIntComp is designed to be
robust. This is based on the fact that in the MetrIntComp metric algorithm for the in-
telligence indicator data comparison uses the two unpaired-samples Mann-Whitney
test that is known as a nonparametric robust test [72,73]. Mann-Whitney test for
two unpaired-samples it is the non-parametric analog to the two-sample unpaired
T-test.

MetrIntPair is more accurate based on the consideration that is based on nor-
mally distributed intelligence indicator data using by a parametric test. Parametric
tests require data sets by a smaller size. In situations of non-normality, solutions
like the elimination of outlier values or aplication of a transformation of the data
are used. In the paper [74] is proved that for sample sizes larger than 30 (>30),
the violation of the normality assumption should not cause major problems. In case
of large enough sample sizes (hundreds), frequently can be used parametric meth-
ods even when the data are not normally distributed [75,76]. Another property of
the MetrIntPair is the pairwise intelligence evaluations, and using the Paired Two
Sample T-test, which has an increased accuracy for low numbers of intelligence
indicator data.

6. CONCLUSIONS

Intelligent cooperative multiagent systems are used for many real-life difficult
problems-solving. There are very few metrics that allows a quantitative comparison
of two multiagent systems intelligence level/quotient. In this paper, we proposed
a novel metric called MetrIntPair that allows an accurate comparison of two co-
operative multiagent systems’ intelligence in solving the same class(es)/type(s) of
problems. The proposed metric takes into account the variability in the intelligence
of the multiagent systems. By evaluating a multiagent system’s intelligence in a
specific situation, a result could occur; by repeating the evaluation, a different result
could be obtained. For increasing the comparison accuracy for a smaller numbers
of intelligence evaluations, the principle of intelligence indicators data pairing was
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considered.
For validation purposes of the proposed metric, we designed a case study for

two cooperative multiagent systems denoted as MAS1 and MAS2. MAS1 operated
as a Rank-Based Ant System22,23 and MAS2 operated as an MMAS,23,24 both of them
being specialized in solving an NP-hard problem, namely the TSP. The result of the
intelligence comparison based on the proposed metric proved that the obtained small
difference in intelligence was the result of an accident/variability. By repeating the
experiments, slightly different results could occur, but the conclusion related with
the classification is the same, there is no statistically significant difference in the
intelligence between the two considered multiagent systems.

Based on a comprehensive study of the scientific literature, we consider that
our proposed metric called MetrIntPair is original, and will represent the basis
for intelligence comparison of cooperative multiagent systems in many further
researches. As an important property that makes it applicable is its universality. It
could be applied in the comparison of any agent-based systems, agents that solve
solely problems, or multiagent systems that cooperatively solve problems. It is
not limited on aspects such as the agents’ architecture, the multiagent systems’
architecture. Using this metric, the intelligence of a multiagent system composed of
reactive agents and the intelligence of a multiagent system composed of agents can
be compared with logic architecture in solving problems by the same type.
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Abstract: Intelligent cooperative multiagent systems are applied for solving a large range of real-life
problems, including in domains like biology and healthcare. There are very few metrics able to make
an effective measure of the machine intelligence quotient. The most important drawbacks of the
designed metrics presented in the scientific literature consist in the limitation in universality, accuracy,
and robustness. In this paper, we propose a novel universal metric called MetrIntSimil capable of
making an accurate and robust symmetric comparison of the similarity in intelligence of any number
of cooperative multiagent systems specialized in difficult problem solving. The universality is an
important necessary property based on the large variety of designed intelligent systems. MetrIntSimil
makes a comparison by taking into consideration the variability in intelligence in the problem solving
of the compared cooperative multiagent systems. It allows a classification of the cooperative multiagent
systems based on their similarity in intelligence. A cooperative multiagent system has variability
in the problem solving intelligence, and it can manifest lower or higher intelligence in different
problem solving tasks. More cooperative multiagent systems with similar intelligence can be included
in the same class. For the evaluation of the proposed metric, we conducted a case study for more
intelligent cooperative multiagent systems composed of simple computing agents applied for solving
the Symmetric Travelling Salesman Problem (STSP) that is a class of NP-hard problems. STSP is the
problem of finding the shortest Hamiltonian cycle/tour in a weighted undirected graph that does not
have loops or multiple edges. The distance between two cities is the same in each opposite direction.
Two classes of similar intelligence denoted IntClassA and IntClassB were identified. The experimental
results show that the agent belonging to IntClassA intelligence class is less intelligent than the agents
that belong to the IntClassB intelligence class.

Keywords: symmetric travelling salesman problem; diversity of intelligent systems; similarity
in intelligence; machine intelligence measure; cooperative problem solving; computational-hard
problem

1. Introduction

Intelligent cooperative multiagent systems (ICMASs) are applied for a large diversity of difficult
real-life problem solving tasks [1–6]. In cooperative multiagent systems (CMASs), the intelligence
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could be considered at the system’s level. Much research has [3,7] proved that, even in cooperative
multiagent systems composed of simple agents, an increased intelligence at the systems level could
emerge if the member agents cooperate efficiently and flexibly.

In scientific literature, the intelligence estimation is many times based on some intuitive
biologically inspired intelligence considerations. There are very few studies related to intelligence
measurement, from which few are able also to be applied for accurate and robust symmetric
comparison of the intelligence of two or even more multiagent systems. We consider that, similarly to
biological systems, there is a variability even in the case of ICMASs. In some situations, a CMAS could
behave more intelligently, in others less intelligently. Another aspect consists in treating what we call
low and high outlier intelligence values. Sometimes taking into consideration such values could result
in an erroneous evaluation and/or comparison result. Another aspect that we consider important
consists in the number of compared multiagent systems. If the intelligence of more than two multiagent
systems should be compared, an erroneous decision consists in comparing them pairwise. We will
further elaborate on this subject in the discussions section.

We have not found in the scientific literature an effective metric that includes all of the
considerations previously mentioned, able to simultaneously compare the similarity in intelligence
of any number (even more than two) cooperative multiagent systems. With this purpose, we
propose a novel metric called MetrIntSimil that is capable of making an accurate and also robust
symmetric comparison of the similarity in intelligence of two or more than two cooperative multiagent
systems, taking into consideration the variability in the intelligence of the multiagent systems.
The Travelling Salesman Problem (TSP) [8–10] is a well known NP-hard problem (non-deterministic
polynomial-time hardness). NP-hardness, is the defining property of a class of problems that are,
“at least as hard as the hardest problems in NP”. Both variants of the TSP the Symmetric TSP (STSP) and
the Asymmetric TSP (ATSP) are frequently studied. In order to assess the effectiveness of the proposed
metric, we conducted a case study. Three multiagent systems composed of cooperative reactive agents
specialized in solving a class of NP-hard problems, the STSP [11], were considered. The cooperative
multiagent systems operated as a Best-Worst Ant System [12,13], a Min-Max Ant System [14,15] and an
Ant Colony System [16,17].

The upcoming part of the paper is organized as follows: Section 2 analyzes the intelligence of
cooperative multiagent systems; representative metrics described in the scientific literature proposed
for measuring artificial systems intelligence are also presented. In Section 3, our proposed MetrIntSimil
metric for intelligence comparison of more cooperative multiagent systems is presented. For validation
purposes, in Section 4, a case study was performed. In Section 5, we discussed on the designed
MetrIntSimil metric and compared it with a recent metric presented in the literature. Section 6 presents
our next research direction. In Section 7, the main conclusions of the research described in this paper
are presented.

2. Measuring the Machine Intelligence Quotient

2.1. Intelligent Cooperative Multiagent Systems

Theories and principles of systems science can explain many complicated matters of the world
and offer a new vision on many unsettled problems [18,19]. As a particular scientific domain, it has its
own particular methodology for qualitative and quantitative analyses. The motivation for the domain
of systems science is the necessity of understanding the systems research with operable mathematical
methods as an organic whole. Systems science among others establishes systemic formulas based on a
unified systems approach.

Langley, Laird, and Rogers [20] examine the motivations for research on cognitive architectures.
In the paper, the architecture of cognitive systems described in scientific literature was reviewed.
The authors discuss some open issues that should drive research related to the architecture of
cognitive systems. They consider the following capabilities that a cognitive architecture should
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support: organization, performance, learning and some theoretical criteria for making an evaluation at
the system level.

In Ref. [21], a prototype agent-based geographical information system (GIS) abbreviated as GXGIS
is proposed. In the proposal, a developed interface agent interactively assists the users in the query
formation processes. It has the capability to offer domain knowledge associated with a given query.
Another capability of the agent consists in the recording of a user’s troubleshooting experience and
show it to the same user or other users as hints.

We call intelligent agent-based systems the intelligent agents and the intelligent cooperative
multiagent systems. The motivation for using this generic name consists in the fact that a cooperative
multiagent system from the external point of view could be seen as an individual. Whomever (human
or an artificial agent) submits a problem for solving does not know that the problem is solved by an
agent or cooperatively by more agents. He/she/it submits the problem to an agent and the problem
could be subsequently solved, if necessary, cooperatively by more agents. There is various research
worldwide focused on the development of intelligent agent-based systems [2,3,22,23].

The agents’ intelligence could not be unanimously defined based on the large diversity of
agents [2]. The intelligence estimation is many times realized based on different considerations
like [3]: autonomous learning, self-adaptation and evolution. These considerations are inspired by
biological systems able to learn during their life cycle, to adapt to the environment and to evolve
during more generations.

Mobile agents versus static agents are able to move in the environment during the problem solving.
Mobile agents could be classified as software mobile agents and robotic mobile agents. The software
mobile agents operate in a software environment (a computer, or a computer network); the mobile
robotic agents operate in a physical environment (a swarm of mobile robots distributed in a physical
environment specialized in collecting objects, for example).

To illustrate the impossibility of the definition of the agents’ intelligence, let us consider
the differences in intelligence between static software agents vs. mobile software agents [2].
Many developed mobile agents are more limited in intelligence than their static counterparts.
Limitations in the mobile agents’ endowment with intelligence are based on some practical reasons.
The endowment of a mobile agent with intelligence may increase the agent’s body size. The execution
of an intelligent mobile agent (more complex software code, more computations) in a software
environment requires more computational resources. The transmission of a large number of intelligent
mobile agents in a network might overload the network with data transmission. A large number
of intelligent mobile agents, which execute complex computations to a host, may overload that
host. The mobile agents migrate during their operation in the network, and, based on this fact, it
is difficult to estimate where a mobile agent is at a specific moment of time. This limitation makes
the endowment of mobile agents with communication capacity difficult. The communication is
indispensable for cooperation.

There is no unanimously accepted definition of the cooperative multiagent systems intelligence.
This fact is based on the large diversity of cooperative multiagent systems. Many times, in scientific
literature, a cooperative multiagent system is considered intelligent, based on the simple consideration
that the efficient and flexible cooperation between the agents emerge in intelligence at the systems
level. Based on this aspect, in a cooperative multiagent system, the intelligence could be considered at
the system’s level [2,3]. The intelligence in such a system is higher than the individual member
agents’ intelligence. Even in a very simple cooperative multiagent system, intelligence at the
system’s level could emerge. Efficient and flexible cooperating simple agents could intelligently
solve difficult problems.

There is a lot of research [24,25] focused on the study of decision-making in the frame of
cooperative coalitions. Decisions made in the frame of coalitions outperform many times the decisions
of individuals that operate in isolation.
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Yang, Galis, Guo, and Liu [7] present an intelligent mobile multiagent system composed of
simple reactive agents. The mobile agents are specialized in a computer network administration.
They are endowed with knowledge retained as a set of rules that describe network administration
tasks. The multiagent system could be considered intelligent based on the fact that it simulates the
behavior of a human network administrator.

In our approach, we will refer to agent-based systems, cooperative multiagent systems composed
of two or more agents that cooperatively solve difficult problems. The agent members of such a system
are not necessarily intelligent, but, at the level of the system, there is emerging increased intelligence
that can be quantitatively measured. The study of aspects related to cooperative multiagent system
intelligence is important in order to develop highly efficient problem solving methods.

2.2. Metrics for Measuring the Machine Intelligence

The existence of some properties of the cooperative multiagent systems that could be associated
with intelligence does not allow a quantitative evaluation, such properties just prove its existence.
In Ref. [26], it is considered that the evaluation of a system’s intelligence must be based on some
effective metrics that allow the measuring of the quantity of intelligence and comparison of a system’s
intelligence with the intelligence of another system. In many papers, some evaluation or analysis of
the system’s intelligence are presented. There are very few designed metrics able to make an effective
comparison of two or more multiagent systems’ intelligence.

Besold, Hernandez-Orallo, and Schmid [27] study the difficult problems for the humans that could
be used as benchmark problems for intelligent systems. The authors consider that an intelligent system
that can successfully solve difficult problems for humans has some kind of human-level intelligence.
The paper analyses and discusses this assumption.

There are some metrics developed for making different kinds of measurements in systems that are
considered intelligent. Such metrics are not always developed for measuring the systems’ intelligence
as a whole. They are used only for measuring some aspects that represent interest. A fault-tolerant
system should be able to diagnose and recover from some faults. The fault-tolerance has a direct
impact on the performance of a system. Sometimes, this property of the systems is associated with the
intelligence. Kannan and Parker [28] analyze the intelligent fault-tolerant systems. They study the
effectiveness of some metrics for the evaluation of fault-tolerance in the context of system performance.
A main focus of the presented approach is to capture the effect of intelligence (reasoning and learning)
on the effective fault-tolerance of a system. The fault-tolerance of different heterogeneous multi-robot
teams there were analyzed and compared. The proposed metric is able to make some evaluation of the
quality of learning towards system level fault-tolerance.

Park, Kim, and Lim [29] analyzed the measuring of machine intelligence of human–machine
cooperative systems. They proposed a so-called intelligence task graph as a modeling and analysis
tool. The authors consider that a human–machine cooperative system can be modelled as equations.

Schreiner [30] presents a study realized by the US National Institute of Standards and Technology
(NIST). It accentuates the necessity of developing intelligent systems in the US in different fields such
as the industry and military, including public and private sectors. The study is related to creating
standard measures for systems that can be considered intelligent. Schreiner accentuates the main
studied questions related to how precisely intelligent systems are defined and how to measure and
compare the capabilities that intelligent systems should provide. NIST’s initial approach to establishing
metrics attempts to address different pragmatic and theoretical aspects.

The paper [31] proposes a method called OutIntSys for the detection of the systems, which has a
statistically extremely low or extremely high intelligence, from a set of intelligent systems that solves
the same type(s) of problems. The proposed method can be applied in choosing the most intelligent
systems from a set of intelligent systems able to solve difficult problems.

The Minimum Message Length (MML) principle supports a specific compression as a method
to perform inductive inference resulting in intelligence [32–34]. Dowe and Hajek [35,36] proposed



Symmetry 2018, 2, 48 5 of 22

an adapted Turing test with some specific compression exercises, having the purpose to measure the
ability of inductive inference in the context of MML [37]. Sterret [38] analyzed how IBM developed a
question-answering computer (Watson) competes against humans on the Jeopardy game. Watson [39]
was developed in the frame of the DeepQA project by a research team led by David Ferrucci at
“Thomas J. Watson Research Center” located in Yorktown Heights, New York, U.S.

Legg and Hutter defined a formal measure [40], presuming that the performance in easy
environments counts more toward an agent’s intelligence than does performance in difficult
environments. Hibbard [41] proposed an alternative measure, which is based on a hierarchy of sets of
increasingly difficult environments, considering a reinforcement learning framework. Hibbard considers
an agent’s intelligence as the ordinal of the most difficult set of environments that it can pass. The applied
measure is defined in Turing machine and finite state machine models of computing. In the finite state
machine model, the measure is calculated as the number of time steps necessary to pass the test.

Anthon and Jannett [42] define the agent-based systems intelligence based on the ability to
compare alternatives with different complexity. In the presented approach, a measure of machine
intelligence allows the comparing of alternatives with different complexity. A method for measuring
the Machine Intelligence Quotient (MIQ) of the human-cooperative system is adapted and applied to
measure the MIQ of an agent-based system. The method is proposed to be applied for agent-based
distributed sensor network systems. The proposal was tested by comparing the MIQ in different
agent-based scenarios for a distributed sensor network application.

Hernandez-Orallo and Dowe [43] proposed the idea of a general test called a universal anytime
intelligence test. The authors of the study consider that such a test should be able to measure the
intelligence level, which could be in different situations very low (called inept systems) or very high
(called brilliant systems), of any biological or artificial system. Such a test should be able to evaluate
slowly and quickly operating systems. Another property of such a test consists in the fact that it could
be interrupted at any time, this way obtaining an approximation of the intelligence score. Based on
this property, if more time is left for a test, then a more accurate result will be obtained. The proposed
test is based on some previous works on the measurement of machine intelligence. The considered
works were based on Kolmogorov complexity and universal distributions. In the 1990s, the C-tests
and compression-enhanced Turing tests were developed. The proposal presented in the paper is also
based on the idea of measuring intelligence through dynamic tests. The authors of the research discuss
different developed tests by highlighting their limitations. They introduce some novel ideas that they
consider necessary for the development of a “universal intelligence test”.

A novel metric called MetrIntMeas for measuring the machine intelligence of a swarm system is
presented in the paper [44]. MetrIntMeas is able to measure the machine intelligence of an evaluated
swarm system and compare it with a considered reference machine intelligence value. The metric also
makes a classification of the studied swarm system, by verifying if it belongs to the class of swarm
systems with the considered reference machine intelligence value. The paper gives a definition to
the swarm systems’ evolution in intelligence. It defines the evolution of the swarm systems in the
intelligence, as a measurable increase in intelligence by using the MetrIntMeas metric.

Many researchers are focused on the study of collective intelligence of the swarm systems.
Many difficult problem solving tasks are based on swarm systems. Winklerova [45] assessed
the collective intelligence of a particle swarm system according to a proposed Maturity Model.
The proposed model is based on the Maturity Model of C2 (Command and Control) operational
space and the model of Collaborating Software. The main aim of the study [45] was to obtain a more
thorough explanation of how the intelligent behavior of the particle swarm emerges. A conclusion
of the research is that a swarm system’s effectiveness can be improved by adaptation of the rules
that specifies the particle’s behaviour. Each particle should adjust its velocity using some control
parameters. The parameters value would be derived from inside of the swarm system.

Ref. [46] proposes a novel metric called MetrIntPair for measuring the machine intelligence of
cooperative multiagent systems. The MetrIntPair metric is able to exactly analyze the intelligence of
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two cooperative multiagent systems. It makes an accurate comparison of the intelligence of the two
studied cooperative intelligent systems at an application, and at the same time it verifies if they can be
included in the same class of intelligence (solve problems with the same intelligence). The intelligence
comparison of two cooperative systems is based on some kind of pairwise problem solving intelligence
evaluations. This approach has as principal advantage versus the non-pairwise intelligence evaluations
the decrease of the number of necessary problem solving experimental intelligence evaluations versus
the case when non-pairwise intelligence evaluations are made.

Liu, Shi, and Liu [47] present a study related to the analysis of the intelligence quotient and the
grade of artificial intelligence. A so-called “standard intelligence model” was proposed. It unifies
artificial intelligence and “human characteristics” that include aspects of knowledge like: input, output,
mastery, and creation.

Douglas Detterman [48] announced a challenge related to the Artificial Intelligence artefact
measuring by classical IQ tests. Sanghi and Dowe [49] in 2003 presented a computer program tested
on some standard human IQ tests. The program was smaller than the chess-playing Deep Blue [50],
having just about 960 lines of code written in the Perl programming language. It surpassed the average
human intelligence score by 100 on some tests [49].

In this subsection, we presented some relevant metrics for measuring machine intelligence.
Each of the proposed metrics is based on a specific method of measuring the intelligence,
appreciating the intelligence measure based on some specific principles/definition of the intelligence.
Different definitions of the intelligence and different associated measuring approaches do not allow a
punctual comparison of the metrics (many of them do not allow even any considerable comparison).
There is no standardization or even a relatively generally acceptable view on what an intelligence
metric should measure. Based on this consideration, the design of novel universal metrics that could
standardize the intelligence measuring is an open and important research direction.

In our opinion, the most feasible consideration of measuring the machine intelligence consists
in the principle of difficult problem solving ability. The purpose of the design of intelligent systems
consists in the efficient solving of difficult problems. We consider that the main purpose of an
intelligence metric consists in the differentiation of the computing systems based on the problem
solving intelligence. The universal MetrIntComp metric [51] presented in the literature is able to
make a robust comparison of two cooperative multiagent system’s intelligence, and classify them
in intelligence classes. MetrIntComp is effective even in the case of small differences in intelligence
between the compared intelligent systems. For proving the effectiveness of the metric, a case study for
two cooperative multiagent systems was presented [51]. MetrIntComp has as disadvantages related to
the reduced accuracy and the limitation in the application for intelligence comparison to more than two
intelligent systems at the same time. We will discuss this subject with more details in the Discussion
section. Based on these limitations, the design of a novel metric that eliminates these limitations is
important and actual.

3. Description of the MetrIntSimil Metric

In this section, we present a novel universal metric proposed for the accurate and robust symmetric
comparison of the similarity in intelligence of two or more than two CMASs specialized in difficult
problem solving. The MetrIntSimil metric is described as an algorithm called from now on Multiagent
Systems Intelligence Comparison. Henceforth, we consider a set of cooperative multiagent systems
denoted as MasSet= {MA1, MA2, . . . , MAk}. |MasSet| = k represents the number of compared
multiagent systems. The obtained intelligence indicators as a result of problem solving intelligence
measuring are denoted as Set1 = {A1t1, A1t2, . . . , A1tn1}, Set2 = {A2t1, A2t2, . . . , A2tn2}, . . . , Setk =
{Akt1, Akt2, . . . , Aktnk}. |Set1| = n1, |Set2| = n2, . . . , |Setk| = nk represents the cardinality/sample
size of Set1, Set2, . . . , Setk. Table 1 presents the obtained intelligence indicator results for
MasSet. A1t1, A1t2, . . . , A1tn1—represents the measured intelligence of the MA1; A2t1, A2t2, . . . ,
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A2tn2—represents the measured intelligence of the MA2; . . . ; Akt1, Akt2, . . . , Aktnk—represents the
measured intelligences of the MAk.

Table 1. Symmetric experimental evaluation of MA1(Set1), MA2(Set2) and MAk(Setk) intelligence.

Set1 Set2 . . . Setk

A1t1 A2t1 . . . Akt1
A1t2 A2t2 . . . Akt2
. . . . . . . . . . . .
A1tn1 A2tn2 . . . Aktnk
CentrInt1 of Set1 CentrInt2 of Set2 . . . CentrIntk of Setk

An intelligence indicator should make a quantitative indication of a system’s intelligence. In the
case of a particular set of cooperative multiagent systems, the researcher who wishes to compare the
intelligence of more multiagent systems should decide on the most appropriate intelligence indicator.
Our metric, presented in the form of the MetrIntSimil algorithm, is appropriate for multiagent systems,
where the problem solving intelligence indicator of each system can be expressed as a single value.
If necessary, in the case of a multiagent system, this value can be calculated as the weighted sum of
some other values that measure different aspects of the system intelligence Equation (1):

IntInd = wg1 ×ms1 + wg2 ×ms2 + · · ·+ wgr ×msr; wg1 + wg2 + · · ·+ wgr = 1. (1)

Equation (1) indicates the general case when the intelligence indicator is calculated as the
weighted sum of r intelligence components measure, where: ms1, ms2, . . . , msr denote the intelligence
components measure, which are obtained as a result of a problem solving intelligence evaluation; and
wg1, wg2, . . . , wgr denote the intelligence components weights. For illustrative purposes, we present
the scenario of an intelligent cooperative multiagent system composed of flying drones (drones
with agent properties) denoted CoopIntDrones. The drones should cooperatively perform different
missions established by a human specialist(s) denoted HE. Based on the efficient cooperative solving
of difficult problems, the intelligence can be considered at the system’s level. The intelligence of
such a system cannot be unanimously defined. The human specialist(s) who would like to measure
the CoopIntDrones intelligence must clarify what he/she understands by intelligence, establish the
corresponding problem solving intelligence indicator, and the intelligence components based on that
should generate the intelligence indicator. HE could consider, for example, the machine intelligence
based on the intelligence of fulfilling the mission and the ability to learn. CoopIntDrones can learn
new data/information/knowledge that could increase the efficiency of cooperation and improve
the fulfilling of future missions. As intelligence components, the following could be considered:
the necessary time for the fulfilling of the mission; the mission fulfilling accuracy; quantity of new
data/information/knowledge learnt at the system’s level; quantity of measurable improvement in
cooperation efficiency by learning; degree of autonomy in the fulfilling of the mission (counting
the number of times for which the remote intervention of human specialists was necessary) and
some others.

CentrInt1, CentrInt2, . . . , CentrIntk represent the central intelligence indicators of the MA1,
MA2, . . . , MAk. We considered the central intelligence indicators of MA1, MA2, . . . , MAk as the
means or the medians of the Set1, Set2, . . . , Setk. The decision for opting as central intelligence
indicator for the mean is in the parametric case (all the intelligence indicator data sampled from
Gaussian population with equal Variance and Standard Deviation(SD); Variance=SD2) or the median in
the nonparametric case (not all the intelligence indicator data sampled from Gaussian population or all
the intelligence indicator data sampled from Gaussian population, but not all the intelligence indicator
data variances are equal).
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Figure 1 presents the flowchart of the main processing steps performed by the MetrIntSimil
metric. The MetrIntSimil algorithm described in detail in Figure 2 compares the intelligence of MA1,
MA2, . . . , MAk on some testing problems sets. It checks if the results (more concretely, the central
intelligence indicators) are similar or different from a statistical point of view. We call in the following,
Null Hypothesis denoted as H0, the statement that MA1, MA2, . . . , MAk intelligence are similar from
the statistical point of view. We denote by H1 the Alternative Hypothesis, which indicates that the
intelligence of MA1, MA2, . . . , MAk is different from the statistical point of view.

Set ; Set  Set

Figure 1. The flowchart of the processing performed by the MetrIntSimil metric.

The MetrIntSimil metric uses as input Set1={A1t1, A1t2, . . . , A1tn1}; Set2 =

{A2t1, A2t2, . . . , A2tn2}; . . . ; Setk = {Akt1, Akt2, . . . , Aktnk} that represents the MA1, MA2, . . . ,
MAk intelligence indicators obtained during the MasSet intelligence evaluation in solving some sets of
test problems.

For the normality verification, we propose the One-Sample Kolmogorov–Smirnov Goodness-of-Fit
test [52–54] and the Lilliefors test [53–55] that is based on the Kolmogorov–Smirnov test. For the verification
of equality of variances of two samples, the F test [56] can be used. For the verification of equality of
variances of more than two samples, we propose the use of the Bartlett test [57,58].

We propose in some cases the use of a method for the elimination of outlier intelligence indicator
values. We call outlier intelligence indicator value, a very high or very low intelligence value, different
from those other intelligence indicator values. The difference of an intelligence indicator value
from others should be considered from the statistical point of view. Based on this fact, we consider
appropriate the application of statistical tests for outlier intelligence values detection. There are many
tests for statistical outliers’ detection described in scientific literature, like: Chauvenet’s criterion [59,60],
Peirce’s criterion [61], Dixon’s Q test [62] and Grubbs test [63].

We chose the Grubbs test for outliers’ detection and decided to apply the significance level
α_grubbs = 0.05. At first application, the Grubbs test is able to detect a single outlier (if there is at
least one outlier). If a value is identified as an outlier, then it can be concluded that this is the most
statistically different value from those other measured intelligence indicator values. If an outlier is
identified, then a decision of whether the outliers’ detection test should be applied again may be
considered. This is a recursive process, and the detection method could be applied consecutively more
times until there are no other outliers identified.

If sample intelligence data does not follow a Gaussian distribution, then one can opt for the
application of a transformation. Some of the most common normalizing transformations are indicated
in Table 2 [64].
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Table 2. Examples of transformation that can be applied in order to obtain normally distributed data.

Type of Data and Distribution Normalizing Transformation

Set comes from Poisson distribution Square root of Set
Set comes from Binomial distribution Arcsine of square root of Set

Set comes from Lognormal distribution Log (Set)

MetrIntSimil: Multiagent Systems Intelligence Comparison Algorithm 

Set1: A1t A1t A1t Set2: A2t A2t A2t Setk: Akt Akt Akt

//The calculated Central Intelligence Indicators  MA , MA ,…, MA

CentrInt1, CentrInt2,…, CentrIntk;

DecisionIntelligence; MA , MA ,…, MA

Set1, Set2,…, Setk;

Coefficient of Variation CV Set1, Set2,…., Setk;

Set1, Set2,…, Setk CV

Set1, Set2,…, Setk 

Set1, Set2,…, Setk;

If then

Set1, Set2,…, Setk 

EndIf

Normality Set1, Set2,…, Setk;

If Set1  Set2 …..  Setk then Normality: YES;

Normality: NO;

EndIf

If Normality YES) then 

// variances Set1, Set2,…, Setk  Bartlett test.

H0Var; H0Var -  Null Hypothesis 

H1Var; H1Var - Alternative Hypothesis

@  H0Var Bartlett test

EndIf

@  H0  H1;//Related to the similarity in intelligence 

If Normality=YES  “H0Var is true” then

Set1, Set2,…, Setk;

CentrInt1, CentrInt2,…, CentrIntk Set1, Set2,…, Setk;

Single-Factor ANOVA _int

P-Value

EndIf

If Normality Normality H1Var is true” then

Set1, Set2,…, Setk.

CentrInt1, CentrInt2,…, CentrIntk Set1, Set2,…, Setk;

Kruskal-Wallis _int

P-Value

EndIf

@  CentrInt1, CentrInt2, CentrIntk

 

If  P-Value then 

H0

DecisionIntelligence=”MA , MA , ….MA  intelligences are similar”  

Else

H1 H0

DecisionIntelligence=”MA , MA ,…, MA  intelligences are different” 

If Kruskal-Wallis then

 Dunn test

Else

Tukey test

EndIf 

EndIF 

EndMultiagentSystemsIntelligenceComparison 

Figure 2. The proposed MetrIntSimil metric.
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For the effective comparison of intelligence of the multiagent systems, the parametric Single-Factor
ANOVA test [65] or the nonparametric Kruskal–Wallis test [66] should be applied. In case of choosing
each of them, the α_int (the significance levels at which the statistical test is applied) value should be
established. We suggest as the value of α_int, α_int = 0.05, which we consider as the most appropriate.
α_int denotes the probability to make a Type I error, to reject H0 (Null Hypothesis) when it is true.
A Type I error means detecting an effect that is not present.

In the proposed metric algorithm, if p-value > α_int (p-value obtained by applying the
Single-Factor ANOVA test or the Kruskal–Wallis test), then it can be decided that H0 could be accepted.
The conclusion states that even if there is a numerical difference between the calculated central
intelligence indicators CentrInt1, CentrInt2, . . . , CentrIntk, there is no statistical difference between
the intelligence of the studied k multiagent systems. The numerical difference is the result of the
variability in the intelligence of the multiagent systems. In this situation, from the classification point of
view, all of the multiagent systems MA1, MA2, . . . , MAk can be classified in the same class composed
of systems with similar intelligence.

If H1 is accepted (as result of H0 rejection), then the intelligence level of MA1, MA2, . . . , MAk is
different. The numerical difference between the central intelligence indicators CentrInt1, CentrInt2, . . . ,
CentrIntk is statistically significant and is not the consequence of the variability. From the classification
point of view MA1, MA2, . . . , and MAk cannot be classified in the same class composed of systems
with similar intelligence. If H1 is accepted, then the Dunn test [67] or Tukey test [68,69] should be
applied, which allow the classification in intelligence classes of all the studied CMASs. More concretely,
these tests make a statistical comparison between the central intelligence indicators, the mean in
parametric case or the median in the nonparametric case.

Tukey test [68,69] is a single-step parametric multiple pairwise comparison method. Tukey test can
be used as a post hoc analysis following the rejection of Single-Factor ANOVA test null hypothesis.

Dunn’s test [67] is a non-parametric multiple pairwise comparisons method. Dunn’s test is based on
rank sums. It is used as a post hoc method following rejection of a Kruskal–Wallis test null hypothesis.
In the case study presented in a further section based on the non-parametric data, the Dunn test
is applied.

4. Measuring the Intelligence of More CMASs—A Case Study on Solving the Symmetric TSP

4.1. Symmetric Travelling Salesman Problem Solving

The TSP has many applications, such as logistics, planning, and the manufacture of microchips.
A sub-problem in DNA sequencing is represented as a slightly modified version of the TSP [70].
The concept city represents DNA fragments, and the concept distance represents a similarity measure
between DNA fragments. Ref. [71] analyses the computational recognition of RNA Splice Sites described
as a modified TSP a Quadratic Traveling Salesman Problem by some exact algorithms. Ref. [72] presents an
evolution based biosensor receptor DNA Sequence generation algorithm. The TSP approach is applied
in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences.

The Travelling Purchaser Problem (TPP) and the Vehicle Routing Problem (VRP) are both NP-hard
problems that represent generalizations of TSP. Since TSP is NP-hard, TPP and VRP are also NP-hard.
The TPP can be enounced as follows “Given a list of marketplaces, the cost of travelling between
different marketplaces, and a list of available goods together with the price of each such good at each
marketplace, the task is to find, for a given list of articles, the route with the minimum combined cost
of purchases and traveling” [73]. The VRP can be enounced as follows “What is the optimal set of
routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?” [74].

Both variants of the TSP, the Asymmetric TSP (ATSP) and the Symmetric TSP (STSP) are frequently
studied. The ATSP characterizes the situation when edges may not exist in both directions or the
distances might be different; a directed graph is formed. Traffic collisions, one-way streets, are examples
of situations when the symmetry property is not satisfied. Dantzig et al. [75] formulated the asymmetric
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traveling salesman problem as a 0–1 linear program on a graph (V,E). Their formulation for the
symmetric case gives rise to the standard subtour elimination polytope SEP(n).

The STSP [11] is the problem of finding the shortest Hamiltonian cycle/tour in a weighted
undirected graph (the distance between two cities is the same in each opposite direction) that does
not have loops or multiple edges. Many practical combinatorial optimization problems in production
management and scheduling can be formulated as equivalent to the STSP. The symmetry property
is useful based on the fact that it halves the number of possible solutions. There are many studies
and research performed on the STSP [76–78]. Ref. [79] proposes a transforming of asymmetric into
symmetric TSP.

Ref. [80] proposes an alternate formulation of the symmetric traveling salesman problem and
presents its properties. The polytope defined by this formulation, U(n), is compared with the standard
subtour elimination polytope SEP(n). It is proved that U(n) ⊆ SEP(n).

Ref. [81] proposes a novel lower bounding and reduction procedures for the STSP. In the
proposal, the lower bounds are obtained through the solution of the linear program corresponding
to the 2-matching relaxation, being improved through a restricted Lagrangean 2-matching approach.
It presents a comparison of the new bounds with bounds obtained with the well-known Lagrangean
1-tree relaxation.

4.2. CMASs That Operate by Mimicking Biological Ants

The ability of biological ants to determine shortest paths to food was studied in many research
papers [82–84]. An individual ant possesses few capabilities, but, when operating in swarms/colonies,
the ants are capable of having a complex surviving behavior. Biological ants communicate by
pheromones, which allow the finding of the shortest path between food sources and their nests.
All ants deposit pheromones on the trail while walking. Each ant follows the pheromone trail that it
meets with some probability, and which is proportional to the density of the pheromone. The more
ants walk on a trail, the more pheromone is deposited on it, and the more and more ants follow that
trail. Based on this collaboration mechanism, there is a very high probability for the ants to find a very
short path (shortest path or close to it).

For proving the effectiveness of the designed MetrIntSimil metric, we conducted a case study.
The Symmetric Travelling Salesman Problem solved by three CMASs formed by autonomous mobile
agents that mimic biological ants was considered. We understand by mobile agents simple computing
embedded agents able to move in the environment during the problem solving. The communication
between the agents is carried out by signs and it is similar to the communication of the biological
ants by using pheromones. This type of communication allows an efficient, flexible and robust
cooperative problem solving even in CMASs composed of a large number of individuals. There are
many studies conducted on systems composed of artificial ants and their applications for different
problem solving [85,86].

Marco Dorigo in his Ph.D. thesis [16,17] proposed first the problem solving based on simple
computing agents that mimic the operation of biological ants. Artificial ants (operating as reactive
agents known in the intelligent agent literature) imitate the behavior of biological ants on how they
search for food. As a general idea, in an Ant System, initially, each agent is placed on a randomly chosen
city (node of the graph). An agent k currently at node i chooses to move to node j by applying the
following probabilistic transition rule Equation (2). After each agent completes its tour, the pheromone
amount on each path will be adjusted according to Equations (3)–(5):

pk
ij(t) =


[τij(t)]

α×[ηij ]
β

∑l∈Jk(i)
[τil(t)]

α×[ηil ]
β , if j ∈ Jk(i),

0, otherwise.
(2)
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τij(t + 1) = (1− ρ)τij(t) + ∆τij(t), (3)

∆τij(t) =
m

∑
k=1

∆τk
ij(t), (4)

∆τk
ij(t) =

{
Q
Lk

, If (i, j) ε tour down by agent k,

0, otherwise.
(5)

In Formulas (2)–(5), the following notations are used: α and β are adjustable parameters.
α and β control the relative weights of the heuristic visibility and the pheromone trail. In the
parameters establishment, a trade-off between edge length and pheromone intensity appears to
be necessary. Q denotes an arbitrary constant. dk,h represents the distance between the nodes (k and h);
ηkh, ηkh = 1/dk,h the heuristic visibility of edge (k, h). 1-ρ is the pheromone decay parameter, 0 < ρ < 1,
and it represents the trail evaporation when the agent chooses a node where it decides to move.
m denotes the number of agents, and Lk denotes the length of the tour performed by agent k.

4.3. The Experimental Setup

For the validation of the proposed metric, we carried out experimental evaluations for different
sets of cooperative multiagent systems. We experimented: Ant System, Elitist Ant System, Ranked Ant
System, Best-Worst Ant System, Min-Max Ant System and Ant Colony System. Finally, we decided to
present the validation for three cooperative multiagent systems between which the central intelligence
indicator value does not have a high difference. In the experiment that we present in the following, we
considered three cooperative multiagent systems denoted as MA1, MA2 and MA3, which operated
as a Best-Worst Ant System [12,13] the MA1; a Min-Max Ant System [14,15] the MA2 and Ant Colony
System [16,17] the MA3. All of them were applied for the Symmetric Travelling Salesman Problem solving.
STSP is a well known NP-hard problem [8]. In each multiagent system, the agents cooperated in order
to efficiently solve the undertaken problems by the multiagent system. MasSet={MA1, MA2, MA3}.
|MasSet| = k = 3.

In the experimental setup, for all the analyzed multiagent systems, we considered maps with
nr = 35 randomly placed cities on the map. All the studied multiagent systems were composed
of m = 10 cooperative reactive agents. As parameters, all the cooperative multiagent systems were
considered: Number Of Tests = 1000; α (power of the pheromone); β (power of the distance/edge weight);
evaporation (the evaporation factor). We choose as parameter values (experimentally established): α =
1; β = 1 and evaporation = 0.1. Table 3 presents the obtained simulation results. In the simulations, the
obtained best to date travel value from the end of the problem solving was considered for the case of
all multiagent systems as the intelligence indicator.

Table 3. The obtained Intelligence Indicators for MA1, MA2 and MA3.

Set1/MA1 Set2/MA2 Set3/MA3

7.172; 6.864; 7.691; 6.12; 5.657;5.706; 5.409; 5.442; 5.342; 4.868; 6.134; 5.251;
6.572; 6.612; 7.413; 5.786; 5.826; 5.123; 4.81; 5.579; 4.85; 5.307; 5.605; 5.624;
6.262; 6.626; 6.135; 6.217; 5.853; 5.121; 5.459; 4.492; 6.053; 4.788; 5.055; 5.153;
6.586; 6.467; 8.084; 7.313; 4.944; 5.466; 4.978; 5.095; 5.779; 4.87; 5.339; 4.992;
7.295; 6.473; 6.516; 6.657; 5.917; 5.76; 5.315; 5.558; 5.322; 5.363; 5.493; 5.004;
7.009; 8.297; 7.714; 6.729; 5.661; 5.546; 5.809; 5.729; 5.261; 5.476; 5.469; 7.278*;
7.177; 6.887; 6.612; 5.99; 5.519; 5.288; 5.293; 5.365; 5.53; 5.084; 5.337; 5.595;
7.007; 7.333; 5.78; 6.585; 5.806; 4.465; 5.427; 5.217; 5.352; 4.631; 5.068; 4.911;
7.257; 7.225; 8.005; 6.592; 5.244; 5.741; 5.724; 5.579; 4.831; 5.431; 4.933; 4.987;
6.741; 6.37; 5.944; 6.573; 5.599; 5.506; 5.907; 5.421; 5.092; 5.377; 5.589; 5.623;
6.911; 6.513; 7.447; 7.066; 5.312; 5.632; 5.101; 5.476; 5.563; 5.195; 5.926; 5.136;
7.277; 6.924; 7.343; 6.204 4.405; 5.932; 5.454; 5.065; 5.325;

5.111; 5.345
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Table 4 presents the obtained results by analyzing Set1, Set2, and Set3. In the table, the following
notations were used: SEM denotes the standard error of the mean; [LCI95%, UCI95%] denotes the
95% confidence interval of the mean; Lowest denotes the smallest; Highest denotes the utmost; K-S Stat
denotes the Kolmogorov–Smirnov test statistic; Lill Stat denotes the Lillefors test statistic. The normality
was verified by using the One-Sample Kolmogorov–Smirnov Goodness-of-Fit test and Lilliefors test, applied
at α_normal = 0.05 significance level. It can be noticed that the Set3 does not pass the normality test.
In order to obtain normally distributed data on Set3, we applied the Grubbs test with α_grubbs = 0.05.
The Grubbs test identified the value 7.278 as a single outlier. It was identified at the first application of
the test. When applying the test again, no outlier was detected. We calculated Set3∗ = Set3− {7.278}.

The last column of Table 4 presents the analysis results for Set3*. Now, the Set3* passed the
normality test. For the verification of the equality of standard deviations of Set1, Set2, and Set3*,
we applied the Bartlett test at the α_bart = 0.05 significance level. The obtained p-value (p-value of
Bartlett’s test) was p-value = 0.0002 (p-value < α_bart), which suggested that the difference between
the standard deviations of Set1, Set2, and Set3* is very significant. Another calculation detail was the
obtained Bartlett statistics value 17.225.

Table 4. Results of the intelligence indicator sample data analysis.

Type of Analysis MA1/Set1 MA2/Set2 MA3/Set3 MA3/Set3 *

Mean 6.841104 5.40378 5.3376 5.2935
SD/Variance 0.5861/0.3435 0.3647/0.133 0.4471/0.1999 0.3392/0.1151
Sample size 48 50 45 44
SEM 0.08460 0.05158 0.06666 0.05113
[LCI95%, UCI95%] [6.671, 7.011] [5.3, 5.508] [5.203, 5.472] [5.19, 5.397]
Lowest/Highest 5.780/8.297 4.405/5.932 4.631/7.278 4.631/6.134
Median 6.735 5.454 5.325 5.324
CV ≈8.5673 ≈6.7499 ≈8.3764 ≈6.4079
K-S Stat/p-value 0.1024/>0.1 0.1057/>0.1 0.1498/0.0128 0.07404/>0.1
Lill Stat/p-value 0.102/0.2 0.106/0.2 0.15/0.013 0.074/0.2
Normality passed YES YES NO YES

Figure 3 contains the graphical representation of intelligence indicators, Set1, Set2, and Set3,
with all the intelligence indicator data included. As an observation, we mention that the data was
not paired. We understand by pairing the fact that the experimental intelligence evaluation number 1
for MA1, MA2 and MA3 was not carried out for the same problems. The experimental intelligence
evaluation number 2 for MA1, MA2 and MA3 was not carried out for the same problem. The lines
represented in Figure 3 illustrate the intelligence variation in problem solving. The MetrIntSimil metric
algorithm does not restrict the number of intelligence evaluations for all of the multiagent systems to
be the same. In our experimental setup, there were |Set1| = 48, |Set2| = 50 and |Set3| = 45 considered
experimental evaluations of the intelligence. Figure 4 is similar to content of Figure 3, but it contains
the graphical representation of the obtained intelligence indicators data with the outlier intelligence
values excluded.
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Figure 3. Graphical representation of the intelligence indicators of MA1(Set1), MA2(Set2), and
MA3(Set3).
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Figure 4. Graphical representation of the intelligence indicators of MA1(Set1), MA2(Set2), and
MA3(Set3∗) with the outliers excluded.

The Coefficient of Variation (CV) of a sample intelligence indicator data should be calculated using
formula 6. In formula 6, the SD/Mean is multiplied by 100 for obtaining the result in percentages.
For example, SD/Mean = 0.3 multiplied by 100 gives 30. We used the CV value for analyzing the
homogeneity–heterogeneity of the intelligence indicator data [87,88]. We consider the data classification
based on the variability as follows. A classification of the homogeneity–heterogeneity of the data can
be carried out based on the CV. CV ∈ [0, 10) indicates homogeneous data; CV, CV ∈ [10, 30) indicates
relatively homogeneous data; CV, CV ≥ 30 indicates heterogeneous data:

CV = 100× (SD/Mean). (6)

Based on the obtained results, all the samples Set1, Set2 and Set3* were normally distributed, but
having different variances; the MetrIntSimil algorithm indicated the application of the nonparametric
Kruskal–Wallis test with α_int = 0.05. p-value ≈ 0.0001, obtained as a result of the Kruskal–Wallis
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test, p-value < α_int. Based on this result, it should be concluded that H0 cannot be accepted.
The intelligence level of all the studied multiagent systems MA1, MA2, MA3 cannot be considered to
be the same. From the classification point of view, the multiagent systems cannot be classified in the
same intelligence class.

According to the MetrIntSimil algorithm, as a next step, we applied the Dunn test [67] for all
the pairs of Set1, Set2, Set3*, with significance level α_dunn = 0.05. The obtained results, presented
in Table 5, prove that MA2 and MA3 can be included in the same class of systems with similar
intelligence denoted in the following IntClassB. MA1 should be included in a separate class of systems
with similar intelligence denoted IntClassA. The multiagent systems that belongs to IntClassB has a
higher intelligence than the multiagent system that belongs to the IntClassA intelligence class. As an
intelligence indicator in our study, we have considered the global-best, this having the significance that
a lower value indicates higher intelligence. For example, the global-best by 4.868 is better than 8.084.

Table 5. Results of the Dunn test for paired intelligence comparison.

Compared CMASs p-Value Mean Rank Difference Interpretation of the Result

MA1 vs. MA2 <0.001 64.909 MA1 and MA2 *
MA1 vs. MA3 <0.001 76.241 MA1 and MA3 *
MA2 vs. MA3 >0.05 11.331 MA2 and MA3 **

* CANNOT be considered to belong to the same similarity intelligence class; ** CAN be considered to belong
to the same similarity intelligence class.

The obtained results prove (Table 5, the comparison result of MA2 vs. MA3) that MA2 and MA3

can be included in the same similarity class of intelligence, denoted in the following by IntClassB.
As another proof of this fact, the metric algorithm can be applied again just for the MA2 characterized
by the Set2 of intelligence indicators and MA3 characterized by the Set3* of intelligence indicators.
Table 4 presents the fact that the normality test for Set2 and Set3* was passed. For the verification
of the equality of variances of Set2 and Set3*, we applied the F-test at significance level α_ f = 0.05.
The result of the F-test is p-value = 0.63. p-value > α_ f , which indicates that the difference between the
variances of Set2 and Set3* is not statistically significant. Based on these considerations, the application
of the Single-Factor ANOVA test at significance level α_int = 0.05 can be considered. The obtained result
was p-value = 0.1341. p-value> α_int, sustaining the conclusion that the two multiagent MA2 and
MA3 can be included in the same similarity intelligence class.

5. Discussion and Comparison of the MetrIntSimil Metric

In our research, we considered the difficult problem solving intelligence measuring at the level of
the whole cooperative multiagent system, not at the individual/agent level. Our metric, presented in
the form of the algorithm MetrIntSimil, is appropriate for multiagent systems, where the intelligence
indicator of a problem solving by a multiagent system can be expressed as a single value. If necessary,
this value can be calculated as the weighted sum of some values of more intelligent components that
measure different aspects of the system intelligence.

An intelligence indicator should make a quantitative indication of a system intelligence in solving
a difficult problem. The researcher who wishes to make a comparison of the intelligence of two or
more multiagent systems should decide on the type of intelligence indicator. For all the compared
multiagent systems, the type of intelligence indicator should be the same. We consider that an effective
metric must be able to measure the same type of intelligence. As an example, in the case of biological
systems, it makes no sense to compare the intelligence of a fish with the intelligence of a bird.

The elaborated metric takes into consideration the variability in the intelligence of the compared
multiagent systems. A multiagent system could have different intelligent reactions in different
situations. In a specific situation, the reaction could be more or less intelligent. In our research,
we considered the presence of high and low outlier intelligence values, which are statistically very
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different from all other intelligence values. If such outlier values are taken into consideration, this
could influence the comparison result of more multiagent systems’ intelligence.

In our research, we considered the necessity of the establishment of a central intelligence indicator
of a CMAS, which illustrates the central intelligence tendency of the multiagent system. We considered
as possible central intelligence indicators, and the calculation as the means of intelligence indicators
sample data in the parametric case (all Set1, Set2, . . . , Setk are sampled from a Gaussian population
and their variance is equal from statistical point of view) and as the medians in the nonparametric case
(not all the intelligence indicators data are sampled from Gaussian population or all the intelligence
indicator data sampled from Gaussian population, but they have different variances). The median is
more robust than the mean, a higher or lower value influences more the mean than the median.

We did not find in the scientific literature an effective metric based on difficult problem solving
intelligence measuring that has all the properties of MetrIntSimil metric, such as: allowing the
simultaneous intelligence comparison of two or more than two multiagent systems; and accuracy and
robustness in comparison and universality at the same time.

MetrIntComp metric [51] presented in the scientific literature is able to make a comparison of two
cooperative multiagent systems’ intelligence. The MetrIntComp metric is based on a similar principle
of difficult problem solving intelligence measuring as the MetrIntSimil metric. The MetrIntComp
metric uses difficult problem solving intelligence evaluation data, based on which it makes a
mathematically grounded comparison of exactly two cooperative multiagent systems intelligence.
This allows the classification of the compared systems in intelligence classes (classification in the
same class or in different classes). The main advantage of the MetrIntComp metric is the robustness.
The robustness is assured by the fact that in the metric algorithm for the obtained intelligence
indicator data comparison, the two unpaired samples Mann–Whitney test is used that is known
as a nonparametric robust test [89,90]. It does not require data normality (that the samples belong to a
Gaussian distribution).

MetrIntSimil based on the obtained intelligence indicators makes a mathematically grounded
analysis. At a specific step of the MetrIntSimil metric algorithm based on some analysis, it chooses
between the application of the parametric Single-Factor ANOVA test [65] and nonparametric
Kruskal–Wallis test [66]. Based on this fact, the MetrIntSimil metric is accurate and robust at the
same time. MetrIntSimil conserves and extends the properties and advantages of the MetrIntComp
metric. In the case of normally distributed intelligence indicator data with same variances, MetrIntSimil
is able to apply a parametric test that is the most appropriate. Another advantage consists in the
necessary sample size of intelligence indicators. If a parametric test could be applied, then the required
sample size should be smaller than in the nonparametric case.

The Mann–Whitney test for two unpaired samples is the non-parametric analog to the two-sample
unpaired t-test. It uses a different test statistic comparatively with the Kruskal–Wallis test (U instead of
the H of the Kruskal–Wallis test), but the p-value is mathematically identical to that of a Kruskal–Wallis
test [91,92].

Comparatively with the MetrIntComp metric, the MetrIntSimil metric is able to make a
simultaneous comparison of more than two multiagent systems, with the established significance level
α_int (the probability of making a Type I error is α_int). MetrIntComp could be used for the comparison
of more that two cooperative multiagent systems, pair-by-pair, but this approach is not appropriate.
The probability of making a Type I error increases as the number of tests increase. If the significance
level is set at α, the probability of a Type I error can be obtained, regardless of the number of groups
being compared. For example, if the probability of a Type I error for the analysis is set at α = 0.05 and
six two-sample tests (t-test for example) are performed, the overall probability of a Type I error for the
set of tests α_overall = 1–0.956 = 0.265.

In the scientific literature, there is no universal view on what intelligence metrics should measure.
Each of the designed metrics consider the machine intelligence based on different principles. Based on
this fact, most of them cannot be effectively compared directly with each other. For comparison reasons,
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we chose a recent intelligence metric called MetrIntComp [51], which made possible the comparison
and this opens a research direction to standardization of the intelligence metrics. Table 6 summarises
the comparison results.

Table 6. Comparison of the MetrIntSimil metric with the MetrIntComp metric.

Comparison criterion MetrIntComp MetrIntSimil

Principle * *
Applicability @ @

Computations + +
Number of compared CMASs 2 Any number

Properties Universality, Robustness Universality, Robustness, Accuracy
Variability in intelligence Treated Treated

* Intelligence in solving difficult problems; @ Choosing of the system able to solve most intelligently difficult
problems. + (1) Calculus of a machine intelligence measure; (2) Verification of the similarity in intelligence; (3)
Classification in similarity intelligence classes.

A case study was realized for the experimental evaluation of the MetrIntComp metric proposed in
the paper [51]. It measured and compared the intelligence of two cooperative multiagent systems in
solving an NP-hard problem, the Symmetric TSP more concretely. We used the intelligence indicators
reported in the paper [51] and applied on them the MetrIntSimil metric. The same result was obtained
for MetrIntSimil as was obtained by applying the MetrIntComp metric. Both of the metrics made
a differentiation in intelligence between the two studied cooperative multiagent systems, even if
the numerical difference between the measured intelligence was small. Based on this fact, the two
multiagent systems could not be considered to belong to the same class of intelligence and should be
classified in different classes of intelligence.

6. Theory of Multiple Intelligences in Machines: The Next Research Works

Humans can solve more or less intelligent problems that require different types of
thinking [93]: musical-rhythmic, visual-spatial, verbal-linguistic, logical-mathematical, bodily-kinesthetic,
interpersonal, intrapersonal and naturalistic. The theory of multiple intelligences proposed by Howard
Gardner differentiates intelligence into specific modalities [94,95]. According to the theory of multiple
intelligences, the intelligence is not dominated by a single general ability.

In the next research work, we will focus on the development of a theory of multiple intelligences
in machines. Our preliminary conclusion is that such a theory should not be designed based on
similarity with the theory of multiple intelligences in humans. The human intelligence and the artificial
intelligence are not similar. They are of a completely different type. Life on earth is the result of an
evolution by 0.5 billion years [96]. We consider that different types of problem solving by intelligent
systems require different types of machine intelligence. In this framework, we consider an important
particular research direction: the automatic detection of different types of intelligence that an intelligent
artificial system possesses.

With illustrative purpose, we mention the scenario of next-generation flying agent-based drones
(flying drones with properties of intelligent agents) able to transport passengers. Such developments
certainly will be built in the future. Such an intelligent drone must detain different types of intelligence
specific to different types of problems and sub-problems. We consider that, in such a scenario, the clear
definition of similarity between drones is necessary. Drones could be specialized: in transporting very
few passengers, and in transporting a large number of passengers. As examples of types of intelligence
that a drone can possess, it can be noticed: intelligence in communication with the passengers;
intelligence in communication and cooperation with other similar flying drones; intelligence in
communication and cooperation with other non-similar flying drones; intelligence to fly in difficult
weather conditions; and intelligence in avoiding different objects during the flight and some others.
The intelligence measure has the sense to be compared to similar drones. Based on a specific type of
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intelligence, a flying drone could be more intelligent than another similar flying drone. For another
type of problem, the situation could be the vice versa. For example, the flying drone SimFDA could
be more intelligent in the communication with the passengers than the flying drone SimFDB. In the
avoiding of the objects during the flight, SimFDB could be more intelligent than SimFDA.

7. Conclusions

Intelligent cooperative multiagent systems (CMASs) by a large diversity are used for many real
life problem solving tasks. There are very few metrics designed for the quantitative evaluation of
CMASs intelligence. There are even fewer metrics that allow also an effective quantitative comparison
of the intelligence level of more multiagent systems. In this paper, we proposed a novel metric called
MetrIntSimil that allows an accurate and robust symmetric comparison of the similarity in intelligence
of two or more than two CMASs. The proposed metric efficiently takes into account the variability in
the intelligence of the compared CMASs.

For validation purposes of the MetrIntSimil metric, we conducted a case study for three cooperative
multiagent systems, MA1 that operated by mimicking a Best-Worst Ant System [12,13], MA2 that
operated by mimicking an Min-Max Ant System [14,15] and MA3 that operated by mimicking an
Ant Colony System [16,17]. The evaluation was carried out for solving a NP-hard problem, the
Symmetric Traveling Salesman Problem [11]. The proposed metric identified that two of the multiagent
systems MA2 and MA3 have similar intelligence level, and, based on that, they can be classified in the
same similarity class of intelligence denoted IntClassB. The multiagent MA1 intelligence is different
from the other two multiagent systems intelligence, and, based on that, it should be considered that it
belongs to another intelligence class that we denoted by IntClassA. Another conclusion consists in the
fact that the multiagent systems belonging to IntClassB have a higher intelligence level than those
that belong to IntClassA.

The universal MetrIntSimil metric is not dependent on aspects/details like the studied/compared
cooperative multiagent systems’ architecture. It could be applied even to comparison of similarity
in intelligence of systems that operate individually without cooperating. Based on a comprehensive
study of the scientific literature, we consider that our proposed metric is original and will represent
the basis for intelligence measuring and comparison of systems intelligence in many future research
works worldwide.
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Abstract: The Symmetric Traveling Salesman Problem (sTSP) is an intensively studied NP-hard
problem. It has many important real-life applications such as logistics, planning, manufacturing
of microchips and DNA sequencing. In this paper we propose a cluster level incremental tour
construction method called Intra-cluster Refinement Heuristic (IntraClusTSP). The proposed method
can be used both to extend the tour with a new node and to improve the existing tour. The refinement
step generates a local optimal tour for a cluster of neighbouring nodes and this local optimal
tour is then merged into the global optimal tour. Based on the performed evaluation tests the
proposed IntraClusTSP method provides an efficient incremental tour generation and it can improve
the tour efficiency for every tested state-of-the-art methods including the most efficient Chained
Lin-Kernighan refinement algorithm. As an application example, we apply IntraClusTSP to
automatically determine the optimal number of clusters in a cluster analysis problem. The standard
methods like Silhouette index, Elbow method or Gap statistic method, to estimate the number
of clusters support only partitional (single level) clustering, while in many application areas,
the hierarchical (multi-level) clustering provides a better clustering model. Our proposed method can
discover hierarchical clustering structure and provides an outstanding performance both in accuracy
and execution time.

Keywords: Symmetric Traveling Salesman Problem; symmetry; symmetric distance matrix;
Nearest Neighbour method; Chained Lin-Kernighan refinement algorithm; Intra-cluster Refinement;
clustering; optimal number of clusters; similar elements

1. Introduction

Symmetric graphs have many real-life applications as vehicle routing, warehouse logistics,
planning circuit boards, virtual networking [1–4]. The goal of the base Symmetric Traveling Salesman
Problem (sTSP) is to find the shortest Hamiltonian cycle in a graph. The Hamiltonian cycle visits
each vertex exactly once. The length of the path is calculated with the sum of the corresponding edge
weights. The weight values of the graph edges, in general case, are given with a squared matrix of
non-negative values. In this paper, we are focusing on Euclidean TSP (eTSP) problems where the graph
nodes correspond to points in the Euclidean metric space and the weights are equal to the Euclidean
distances between these points. In this case we get a symmetric distance matrix. The generation of
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the shortest Hamiltonian cycle is an NP-hard problem [5] usually formulated as an integer linear
programming problem [6].

Regarding the complexity of the sTSP, two different problems are usually investigated:
the Decision problem (DTSP) and the Optimization problem (OTSP). DTSP aims to determine whether
a Hamiltonian cycle of length not greater than a given value exists. The goal of OTSP is to find the
Hamiltonian cycle of minimal length.

In the brute-force solution method, all possible permutations of the nodes are tested to select the
optimal route. This approach requires O(N!) execution cost. Regarding the other alternative exact
solution methods, we can emphasize the integer linear programming approach and the Held-Karp
algorithm. In the case of integer linear programming formulation [7], we have O(N2) variables and
subtour elimination constraints. As a direct solution is unfeasible, the model is relaxed to find a
solution. In the proposal [8] a novel representation form was introduced to reduce the number of
subtour elimination constraints. In Reference [9], the related integer linear programming problem is
based on the two-commodity network flow formulation of the TSP.

The Held-Karp method [10] uses the dynamic programming approach. The algorithm follows the
idea of successive approximation; the global problem is decomposed into a set of related subproblems
and the optimal solutions of the subproblems are composed into an optimal global solution. Although,
this method provides a better time cost efficiency than the brute-force algorithm, it belongs to
exponential complexity class, having a worst-case cost O(2NN2). Another drawback of the method is
that it raises a significant space requirement too.

In Reference [11] the branch-and-bound approach was implemented to determine the exact
optimal tour. The method builds up a state-tree that manages the paths already processed. Each node
stores a path description together with its cost values involving a lower bound cost value too.
The construction of the state tree requires O(N!) costs in the worst case. In the [12] a genetic node is
assigned to an assignment problem. The related subtours are broken by creating subproblems in which
all edges of the subtour are prohibited.

Due to high computational costs of the exact solution methods, the heuristic optimization of
sTSP is one of the most widely investigated combinatorial optimization problem. One group of the
heuristic methods use algorithms for direct route construction. As the main goal is to minimize the
sum of a fixed number of edge weights, a sound heuristic is to minimize the components in the sum.
Thus, the constructional heuristic methods are in general aimed for selecting the edges of minimal
length. In the case of Nearest Neighbour method [13], the algorithm starts with a random selection of
a vertex. In each iteration step, the nearest free vertex is selected and it will be connected to the current
node. In the Greedy Edge Insertion heuristic method [14], the edges are ordered by their weight values.
The algorithm inserts the shortest available edge into the route in every iteration step. During the
construction process there are two constraints to be met: (a) any node is connected to exactly two
other nodes; (b) no cycle can exist with less than N edges. The Greedy Vertex Insertion algorithm [15]
extends the existing route with a vertex having the lowest cost increase. A similar approach was
implemented in the Boruvka algorithm [16] where the edges are processed in length order. An edge
with minimal length is inserted into the tour if it does not affect the integrity of the current route.

The Fast Recursive Partitioning method [17] performs a hierarchical clustering of the nodes
corresponding to points in the Euclidean space. The points are structured into a hierarchical tree,
similarly to the R-tree structure. The leaf nodes contain a smaller number of points, with a given
capacity. In first phase, the algorithm performs a TSP route generation for each of the leaf buckets and in
the second phase, the local routes are merged into a global tour. The Karp’s Partitioning Heuristic [18]
is based on a similar hierarchical decomposition technique but it uses a more sophisticated patch-based
method. The Double Minimum Spanning Tree algorithm [19] and its improved version, the Christofides
Algorithm [20], generates first a minimal spanning tree for the input graph and adjusts this tree with a
minimum-weight matching.
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Another family of heuristic methods aims at the improvement of existing solutions found
so far. Having one or more initial suggestions, the algorithm tries to find a better solution.
The improvement heuristics can achieve significantly better results than the direct construction
methods [6]. These algorithms use iterations and random search components; thus the execution time is
here usually higher. The k-opt method [21] belongs to the family of local search heuristics. Similarly to
the string edit distance, a tour distance is defined between two edge sequences. The tour t’ is considered
in the k-neighbourhood of t if the distance between t and t’ is not greater than k. Having an initial tour,
this method repeatedly replaces the current tour with a tour in its neighbourhood providing a smaller
tour length. Due to the higher time cost of the neighbourhood construction process, the variants with
lower k values (2-opt and 3-opt) are preferred in the practical implementations.

The Lin-Kernighan [22] algorithm improves the efficiency of the standard k-opt approaches by
using a flexible neighbourhood construction. The method first determines the optimal k value for the
k-opt method and performs the search operation in the dynamic k-neighbourhood environment,
where each move is composed of special 2-opt and 3-opt moves. As the quality of the base
Lin-Kernighan local optimization methods depends significantly on the quality of the initial route,
a usual approach is to repeat the local search with different initial routes and return the best result.
The approach presented by [23] uses a different idea to work harder on the current tours using kicks on
the tour found by Lin-Kernighan. The resulting algorithm is known as Chained Lin-Kernighan method.

There are also approaches using generic Evolutionary Optimization [24] methods for the shortest
tour problem. Such a method generates a set of initial tours and using the route length as a fitness
function, the next generation is produced with the application of the reproduction, crossover and
mutation operators. As the mutation and crossover has a random nature, the quality of the result
is weak for large search space problems. In Reference [25], the predictability of TSP optimization is
investigated analysing different bacterial evolutionary algorithms with local search.

In the Multi-level Approach [26], the tour is constructed with a hierarchy of increasingly coarse
approximations. Having an initial problem on N nodes, the algorithm first fixes an edge at every level,
thus the next level optimizes a problem of smaller size having only (N − 1) nodes. After generating
an initial tour, a usual refinement phase is executed to improve the tour quality. The Tour-merging
Method [27] is based on the observation that the routes of good quality usually share a large set of
common edges. The algorithm uses specific heuristics to generate near-optimal tours and dynamic
programming to unify the partial solutions into a common solution.

There is a rich literature on detailed analysis and performance comparison of the main heuristic
methods (Nearest Neighbour, Nearest Insertion, Tabu Search, Lin-Kernighan, Greedy, Boruvka,
Savings and Genetic Algorithm). Based on the results presented in Reference [16,19,28]: (a) the
fastest algorithms are the Greedy and Savings method but they provide an average tour quality;
(b) the Nearest Neighbour and Nearest Insertion algorithms are dominated by the Greedy and Savings
methods both in time and tour quality factors; (c) the best route quality can be achieved by the
application of 3-opt/5-opt methods (Lin-Kernighan and Helsgaun); (d) considering both the time and
tour quality, the Chained Lin-Kernighan algorithm proves the best performance; (e) the Evolutionary
and Swarm optimization methods are dominated by the k-opt methods both in time and tour quality
factors; (f) the Tour-merging methods applied on the Chained Lin-Kernighan algorithm can improve
the tour quality at some level but it requires a significantly higher time cost.

Most of the available heuristic methods work in a batch mode, where the full graph is presented
as input. In this case the algorithm can get all information already at the start of the tour generation.
An alternative approach is the incremental mode where the graph is initially empty and it is extended
with new nodes incrementally. This can happen in some application areas as knowledge engineering or
transportation problems where new concepts/locations can be added to the existing network. Having
only a batch algorithm, after the insertion of a new node, we should rerun the full optimization process
to get the new optimal tour. In these cases the incremental algorithms can provide a better solution
than the standard batch methods.
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Considering the main heuristic methods, only few can be adapted to the incremental construction
approach. In the family of constructional heuristic methods, the methods usually process the edges
in some selected order. For example, in Greedy Edge Insertion heuristic method [14] or in Boruvka
algorithm [16], the edges are sorted by the length value. Greedy Vertex Insertion algorithm [15] extends
the existing route with a vertex having the lowest cost increase. In the case of Nearest Neighbour
method [13], the shortest free edge is selected related to the actual node. In all cases, if we extend the
graph with a random new element and process this element with the mentioned methods, the resulted
route will be usually suboptimal. In a batch mode, this element would be processed in an earlier
step. The heuristics methods form the other groups use such operations (improvements, hierarchical
decomposition) which are defined on the complete graph or on a complete subgraph.

In this paper, we propose a novel algorithm, called IntraClusTSP that can be used in Euclidean
TSP for both incremental tour construction and tour refinement. The method first selects one or more
clusters in the object graph and then it performs cluster-level route optimization for each cluster. In the
final step, the optimized local routes are merged with the current global route yielding a new optimal
route. This approach is based on the observation that adjacent nodes in the shortest Hamiltonian cycle
in eTSP are usually nearest neighbour nodes. The IntraClusTSP refinement method provides a general
framework for route optimization as it can use any current TSP methods to perform cluster level
optimization. In our model, we use Chained Lin-Kernighan method for local optimization. The clusters
selected for refinement may be overlapping clusters. Based on the performed tests, the proposed
method provides superior efficiency for incremental route construction.

The rest of this paper is structured as follows. In the next section, a survey on TSP heuristics
using incremental or cluster-based optimization is presented. Section 3 presents the motivation for the
development of the proposed IntraClusTSP method, the formal model and the constructed algorithms.
Section 4 focuses on its cost model and cost analysis. It presents the test results of the empirical
efficiency comparison of the proposed method with the several TSP solution algorithms. Section 5
demonstrates the application of IntraClusTSP algorithm in solving of a data analysis problem.

2. Incremental and Segmentation-Based Approaches in Solving eTSP

In the TSP terminology, the term incremental insertion heuristic refers to methods where the
optimal tour is constructed by extension steps where in each step, the route is extended with a single
node. The most widely known methods of this group are Nearest point insertion [29], Furthest point
insertion [30] or Random point insertion [31]. Based on the literature, the Furthest point insertion
provides the best tour length. In this case, the point x as the solution of

argmaxx ∈T′′
{

minT
i (d(xi, x) + d(xi+1, x))

}
,

is selected to be inserted. In the formula, T denotes the current route and T′′ is its complement. In our
problem domain, this method is not suitable, as in every insertion cycle, the T′′ set contains only one
node, the rest nodes are not known yet. Similarly, the Nearest point insertion method selects the
nearest node from the points not linked into the tour yet. Thus, only the Random insertion heuristic
can be used for our problem domain.

Considering the approximation efficiency of the insertion algorithms, Rosenkrantz et al. [32]
has been proven that every insertion algorithm provides an approximation threshold O(log(N)).
The Furthest insertion method that performs better than the other method has a constant lower
bound [33] of 2.43 for eTSP problems. Regarding the efficiency of the Random insertion algorithm,
Azar has proven in Reference [31] that the worst case approximation factor can be given with

Ω(
log(log(N)

log(log(log(N)))
)

The shape of the worst case factor function is given in Figure 1.
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As this theorem proves the Random insertion method provides in general about 15% weaker
result than the Furthest insertion method. In the Random insertion approach, the position of the new
node within the route is calculated with a local optimization step. One option is to minimize the tour
length increase:

minT
i (d(xi, x) + d(xi+1, x))

Another option is to connect the new node to the closest tour element:

minT
i (d(xi, x))

and take the neighbour node with shortest distance as the second adjusted node.
One of the first publications on incremental tour generation [34] is made by T.M. Cronin in

1990. The algorithm ensures optimality as each city is inserted. The author has developed a dynamic
programming algorithm which begins with a baseline tour consisting of the outer convex hull of cities
and proceeds by adding a city at a time to the interior.

The proposed method is based on the following theoretical result: the shortest tour containing k
cities is a quartic and hyperbolic function of the shortest tour containing (k − 1) cities. It can be proven
that an optimal tour must preserve the order defined on the convex hull of nodes [35,36]. In this model,
a perturbation is a sub-tour which leads into the interior of the hull through two adjacent hull vertices,
to capture nodes which do not lie on the hull. Considering the insertion a new node into the tour,
the tour is extended by inserting the new node between those two nodes for which the distance is
smallest. The tests were executed on small examples containing only 127 nodes.

A generalization of the insertion method is presented in Reference [37] where during the insertion
procedure the two neighbouring nodes of the new item are not necessarily consecutive.

As the practical experiences show [19] the most efficient methods use a mixed approach where
a refinement phase is applied on the tour constructed initially. In our investigation, we focus on
segment-level refinement optimization. The motivation on segmentation in eTSP is based on the
experience that the optimal route usually connects near vertices in the plane. The segmentation
generates a set of smaller optimization subproblems to be solved.

This TSP domain was introduced in 1975 by the research paper [38]. In CTSP (Clustered Traveling
Salesman Problem), the salesman must not only visit each city once and only once but a subset (cluster)
of these cities must be visited contiguously. The presented method first reduces the weights of every
intra-cluster edges. Then, a standard branch and bound optimization is applied to the whole graph.
The performed weight reduction ensures that the optimization algorithm will generate the required
intra-cluster routes. Later, several new methods were proposed to solve the CTSP problem, like the
Langrangian method using spanning tree constructions for the graph optimization [39].
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The cluster-based segmentation can be considered as an integrity constraints but it can be used
a tool for reduce the execution costs of the optimization algorithms. The segmentation as a divide
and conquer approach was introduced among others in Reference [40], where the algorithm starts
with the segmentation of the nodes into disjoint clusters using a K-means clustering algorithm. In the
next phase of the proposed method, the local clusters are optimized using the Lin-Kernighan method
yielding a set of optimal local tours. The local tours are merged into a global tour in the final step.
In the merge phase, the cluster centroids are calculated first, then k-nearest elements in the global tour
are determined. Next, each of the k nodes will be tested to determine the cost of inserting the cluster
tour in place of the following edge. The given local tour will be inserted before the node with best
cost value.

The idea of combining local clustering (segmentation) in generation of initial route is used
in many current proposals. In the literature, we can find many variants of this segmentation
approach, as Geometric Partitioning [41], Tour-Based Partitioning [42] and Karp’s Partitioning Heuristic
(Karp) [43]. In more complex cases, like [44], the method constructs a hierarchy of segmentations
in order to provide a cluster leaves with small amount of graph nodes. In Reference [17], the graph
nodes are separated into four disjoint groups corresponding to the different sides of a rectangle.
In Reference [45], the route generated by merging the cluster level clusters is refined with a genetic
algorithm heuristic. In Reference [46], the genetic algorithm and the ant colony optimization are used to
find the optimal local path for the clusters. In the final step, a simple method for choosing clusters and
nodes is presented to connect all clusters in the TSP. The Tour-merging Method [27,35] is based on the
observation that the routes of good quality usually share a large set of common edges. The algorithm
uses specific heuristics to generate near optimal tours and specific dynamic programming techniques
to unify the partial solutions into a common solution.

The extensive literature survey that we made shows that the targeted incremental graph and
optimal route construction approach attracted little attention and no detailed analysis can be found.
In contrary to the rich variety of optimization algorithms on general TSP, only the Random point
insertion method can be used directly as an incremental TSP method. As the Random point insertion
method is considered as a sub-optimal algorithm dominated by many other methods (like Furthest
point insertion, Chained Lin-Kernighan), our motivation is to propose a novel incremental method
having a better optimization efficiency than Random point insertion method has and having a better
execution cost than the standard non-incremental TSP methods have.

3. IntraClusTSP: Intra-Cluster Refinement Method for Incremental sTSP

3.1. Motivations for the Development of a Novel Algorithm

Although, a variety of methods for the tour improvement heuristics have been proposed [36,47],
the best methods are based on the following two main optimization approaches: (a) systematic
exchange of edge tuples (the k-opt optimization methods use this approach); and, (b) hierarchical
decomposition of the original problem into smaller problems.

Due to the complexity of the k-opt method, usually only a lower k value is used in optimization
process. One refinement step relocates the current status vector to a neighbouring position, modifying
arbitrary segments of the tour. In this sense, the k-opt method aims at a global optimization, there is
no way to perform the optimization only on a predefined segment of the node set.

The main goal of our proposed method is to provide a different approach to the tour optimization
that can focus on a cluster of edges in the tour reordering process. The algorithm is based on the idea
of ‘divide and conquer’ concept, that is, it selects an arbitrary segment (a cluster of nodes with the
corresponding edges among them) and then an efficient known TSP algorithm is used to solve this
sub-problem. In the second phase of the iteration, the generated local tour is merged with the rest
(unchanged) part of the initial tour. The proposed approach reuses some known concepts but it differs
from the existing approaches in many aspects:
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- The proposed method performs a tour improvement and not an initial tour construction (unlike
the Greedy, Nearest Neighbour or Savings methods).

- The segments may be overlapping; the same segment can be processed several times.
- The proposed model can be used as an incremental TSP construction method. The new item

is inserted into the current route using the simple Random point insertion method and then a
cluster level refinement phase is executed.

- The link between a segment and the main route is very flexible, there may be any number of
connection edges

- It differs from the k-opt, Lin-Kernighan and Helsgaun methods because the size of the sub-graph
to be improved may be arbitrary and the algorithm of the subgraph optimization can be
considered as a black box optimization.

- Unlike the multi-level approach, this method performs a single level edge fixing and not a
hierarchic refinement.

- Unlike the tour-merging method, the method generates only a sub-tour to be replaced in the
original tour.

3.2. Formal Model and Algorithm of the Proposed Method

Let V = {v1, v2, . . . , vN} denote the set of N positions in a metric space with a distance function

d : V ×V → <

The corresponding distance matrix is denoted by DV A Hamiltonian cycle of V visiting each
position only once is denoted by tV . The permutation related to Hamiltonian cycle t is given by πt.
The tour length of t is defined as

d(t) =
N−1

∑
i = 1

d
(
πt

i+1,πt
i
)

where πt
i denotes the i-th element of the permutation. The set of all Hamiltonian cycles is given with

TV = {tV}

Having an initial approximation t0
V of the optimal Hamiltonian cycle for V, the intra-cluster

reordering tour improvement method selects a subset V′ ⊆ V and using an appropriate DV′ distance
matrix, a local optimal tour t′V′ is generated. The distance matrix DV′ is constructed from DV on the
following way. First, we decompose V′ into two parts: a set of internal nodes and a set of border nodes.
A node is a border node if one of its adjacent nodes is an element of V′ and the other adjacent node in
not element of V’. Two border nodes are linked nodes if there exists a route in V\V′ connecting these
elements. The distance values are given with

DV′ [i, j] =

D[i, j],
0,
∞,

if i or j denotes an internal node
if i and j are linked border nodes

if i and j are not linked border nodes

If d(t0
V′) > d(t′V′), then the new route is involved into the global tour. In the optimization phase,

two linked border nodes are merged into a single virtual border node. Thus the tour sections in V\V′
remain hidden is this phase. It can be seen that the distances related to the virtual border nodes are not
symmetric as these nodes have two physical positions.
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In the merge phase, the generated cluster level route which contains both the internal and border
nodes is merged into the global tour. In this phase, the tour sections hidden in the border nodes are
uncovered again. Using a tour merge operation, the improved route is given with

ti+1
V = (ti

V\ti
V′) ∪ t′V′

Thus, the route sequence t1
V , t2

V , . . . , tm
V is an improvement sequence of the initial route t0

V .
As an example, let us take the tour given in Figure 2a. In the example, 17 nodes are given.

The internal nodes (modes in the cluster) are given in white colour. There are 6 border nodes given
in grey and there are 5 external nodes in black. For the local optimization phase, three virtual border
nodes are generated, the related pairs are denoted with thick edges. The cluster-level local optimization
process involves 10 nodes. The generated local optimal tour is shown in Figure 2b. After uncovering
merging with the external, hidden section, we get the new, refined global tour (Figure 2c).
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If the IntraClusTSP is used to general tour refinement, then we apply the Quality Threshold
Clustering (QTC) to provide an appropriate segmentation. This method uses a partitioning
clustering [48] proposed for analysis of co-expressed genes, generating clusters with a bounded
intra-cluster diameter.

If the IntraClusTSP is used to add a new node in the incremental route construction task, then we
should select a cluster where the new node is near to the cluster centre. We applied a minimum tour
extension concept, where

minT
i (d(xi, x) + d(xi+1, x))

is met. After this insertion phase, we determine a cluster around the new element and perform a
cluster level refinement with the IntraClusTSP method.

An important motivation was in our investigation the fact that the search space of larger TSP
problems are significantly more complex than the search space of smaller problems. A deep analysis
of the corresponding search landscape can be found in Reference [49] where a statistical model was
introduced to estimate the number of local optima in the search space for different problems sizes.
In the proposed method, random sampling technology is used to determine the corresponding model
parameters. A similar analysis was presented later in Reference [50] for a larger problem domain.
An important empirical result of the investigation on Euclidean TSP problems was that the number of
local optima (Clopt) grows exponentially in the function of the problem size (N):

Clopt(N) ∈ O(eNlog(N))
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To demonstrate the complexity of the optimization landscape, we present an experiment in a low
complexity permutation space. Figure 1a,b shows the space of all permutations (N = 6) positioned
along a circle. The permutations are ordered by a lexicographic ordering, where π1 6 π2 means that
there exists an index value i0 ∈ 1 . . . N such that for every i < i0, the node ni is on the same position
in both permutations and for the element ni0 , the position in π1 is less than in π2. The lines between
two permutation nodes represent the neighborhood relationship. Two permutations are neighbored if
they can be converted into each other by a single inversion transformation. The red ray lines from the
centre represent the goal function (the route length) of the corresponding permutation. The largest
route length has a zero ray length, while the longest ray segment denotes the minimum route length.

If we allow discovering the whole neighbourhood in the heuristic optimization process, then we
get 16 local optima denoted by green points in the Figure 3. The number of neighbouring elements

is (
N
2

), thus the processing of the elements in the neighborhood can be very time consuming for

large problems.
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In the proposed method, the tour planning for a cluster is performed with the following algorithm.
Having an initial tour t0

V and the V′ vertex subset, the πt0
V route can be segmented into inner-V′ and

outer-V′ sections. The start and end vertexes of the outer-V′ sections are taken as border vertexes.
For the local route optimization, the set of V′ vertexes are extended with the border vertexes. In the
tour optimization of the local cluster, the link between two related border vertexes denotes an external
section which cannot contain inner vertexes. Thus the related border vertexes must be adjacent in the
winner optimal local Hamiltonian cycle. This constraint is ensured with the following adjustment of
the distance matrix. The distance value between two related border vertexes is set to 0 (or very near to
zero), thus this edge will be included into the optimal tour with high probability. The system always
verifies this constraint explicitly and the proposed tour is rejected if the route is invalid.

After generating the local optimal tour, it will be extended with the corresponding outer sections.
For every related border vertex pair, there exists a sub-tour from the global tour and the edge of the
border vertex pair will be substituted with the corresponding sub-tour. In an extreme case, the sub-tour
may be empty and the two border vertexes denote the same node, that is, the external section contains
only one vertex.

The corresponding algorithm (see Algorithms 1 and 2) of the proposed cluster level refinement
proceeds as follows:
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Algorithm 1: Ic_optim (V, T)

1: // V: set of all vertexes
2: // T: current optimal tour
3: // l: length of current tour
4: // W: set of clusters
5: // Tc: candidate tour
6: l : = d(T); // calculate tour length
7: W := gen-clusters(V); // generate clusters
8: for each VL in W do // loop on clusters
9: // refinement of the local route
10: Tc := Intra-cluster_reordering (V, VL, T);
11: lc = d(Tc); // calculate tour length
12: if lc < l then
13: T := Tc;
14: l : = lc;
15: end if;
16: end for;

Algorithm 2: Intra-cluster_reordering (V, VL, T)

1: // V: set of all vertexes
2: // VL: set of cluster vertexes
3: // T: current optimal tour
4: // B: set of border vertexes
5: // ET: set of external tour segments of T
6: // VLB: the extended local vertex set for local optimization
7: // DL: adjusted distance matrix for the VLB set
8: // TL: the local optimal tour
9: (B, ET) : = partition_tour (T, VL); // determine inner and outer sections
10: VLB := VL union B; // replace outer sections with port symbols
11: DL := gen_dist(VLB); // generate distance matrix
12: TL := Optim (VLB, DL); // generate optimal local route
13: Tnew : = merge (T, TL, B); // update global route
14: Return (Tnew); // the new global optimal tour

4. Cost Analysis of the Cluster Level Refinement Method

In the cost analysis of the tour construction algorithm using cluster level refinement
(intra-cluster_reordering), the cost factors depend on the following parameters:

N: number of vertices in V;
f : cost function of the local optimization algorithm;
N′: number of vertices in local cluster V′;

In the partition_tour function, the tour T is segmented into V′ inner and V′ outer sections. Having
a list representation of the tour and using a status field in the vertex descriptor, the cost of this step can
be approximated with

O(N).

Regarding the generation of the distance matrix, there are two main approaches to be applied.
In the first version, there is a global distance matrix generated in the preparation phase of the
optimization algorithm. This step requires
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O
(

N2
)

cost, while the other approach does not use a global distance matrix but it calculates the local distance
matrix in each iteration step. The cost of this step is equal to

O
(

N′2
)

.

The generation of the local optimum route is performed with a cost value

O
(

f
(

N′
))

.

In the last phase, the local optimum tour is merged with the current global optimum tour. The cost
of this operation is equal to

O(N).

In the case of application of global distance matrix, the total cost can be given with

O
(

N2 + m ·
(

N + f
(

N′
)))

,

where m denotes the total number of iterations. Considering a partitioning with M clusters,
the approximation for the cluster size is

N′ =
N
M

.

The value of M related to the optimum cost can be calculated with the following formula for the
case of global distance matrix:

c1N + c2( f (
N
M

)− N
M

f ′(
N
M

)) = 0.

When using local distance matrix, the corresponding equation is

c1N − c2
N2

M2 + c3( f (
N
M

)− N
M

f ′(
N
M

)) = 0.

Using the approximation
f (x) = xα.

where α > 1. The optimal cluster number for the global distance matrix approach is given by

Mo = N · α

√
c(α− 1)

N
.

The optimal relative size of the clusters depends on both the α parameter and the N value. Taking
the simplification assumption that all the cost coefficients are equal to 1 (c1 = 1, c1 = 1, . . . ), we can
calculate the optimal values. The dependency between α and the optimal cluster size is shown in
Figure 4, where the curve denoted with hollow circle is for N = 100, filled circle for N = 1000 and
rectangle symbol is for N = 10,000.
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In the case of local distance matrices, the optimal Mo value is calculated as the solution of the
following equation:

c1N − c2
N2

M2 + c3(1− α)

(
N
M

)α

= 0.

In Figure 3, the optimal relative size of the clusters is shown for two N values, the line with hollow
circle notation belongs to N = 100, the line with filled circles relates to N = 1000. As the figures show,
in the case of local distance matrix management, the optimal cluster sizes are smaller than the optimal
sizes of global distance matrix management.

Considering the time cost of a global optimization and of the optimization for the partitioning
with optimal cluster size, we get the ratio function presented in Figure 5. The function shows the
ratio value r =

costpartition
costglobal

for different α values. Based on the test calculations, we can say that the
partitioning method provides benefits especially for larger problems using base optimization method
with higher execution costs.Symmetry 2018, 10, x FOR PEER REVIEW  12 of 29 

 

 
Figure 5. Cost ratio in dependency of α. 

Considering the construction of clusters, there are many different clustering approaches in the 
literature. In our algorithm, the quality threshold clustering method was implemented as it has 
many benefits from the viewpoint of the sTSP problem. Based on the obtained experimental results, 
we can say that the adjacent elements in the route are usually the nearest neighbours in the object 
space, too. We have investigated optimal tours and tested whether adjacent elements of the route are 
nearest neighbours in the node space or not. In Figure 6, the histogram of the adjacent element’s 
position in the corresponding neighbourhood is shown. The axis X denotes the position in the 
neighbourhood and axis Y denotes the corresponding frequency in the set of adjacent elements. In 
the test N is set to 4000. According to our test results, about 75% of the adjacent elements are the 
nearest neighbour elements, too. Thus the clusters must contain elements which are in the near 
neighbourhood of each other. The cliques generated by the QTC algorithm can provide this property 
as it contains such elements that for every pair, the distance is always less than a given threshold: ܥௗబ 	= 	 ൛ݔ	|	ݔ∀, ݕ ∈ :ௗబܥ ,ݔ)݀ (ݕ ൑ ݀଴ൟ  

 

Figure 6. The relative distance of the adjacent elements in the optimal tour. 

5. Performance Evaluation Tests for Local Refinements 

In the following, the efficiency of the proposed intra-cluster level route improvement approach 
is investigated. The main question is to what extend can the intra-cluster level reordering improve 
the shortest tour found so far. For the performance analysis, a series of tests were executed. 

Our tests focused on the operations where the proposed cluster level refinement method may 
provide an improvement against the competitor methods. There are three main areas where 
IntraClusTSP can be applied to improve the optimization performance: 

(a) General refinement of initial tour using arbitrary internal/local TSP optimization method; 

Figure 5. Cost ratio in dependency of α.

Considering the construction of clusters, there are many different clustering approaches in the
literature. In our algorithm, the quality threshold clustering method was implemented as it has many
benefits from the viewpoint of the sTSP problem. Based on the obtained experimental results, we can
say that the adjacent elements in the route are usually the nearest neighbours in the object space, too.
We have investigated optimal tours and tested whether adjacent elements of the route are nearest
neighbours in the node space or not. In Figure 6, the histogram of the adjacent element’s position in
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the corresponding neighbourhood is shown. The axis X denotes the position in the neighbourhood
and axis Y denotes the corresponding frequency in the set of adjacent elements. In the test N is set
to 4000. According to our test results, about 75% of the adjacent elements are the nearest neighbour
elements, too. Thus the clusters must contain elements which are in the near neighbourhood of each
other. The cliques generated by the QTC algorithm can provide this property as it contains such
elements that for every pair, the distance is always less than a given threshold:

Cd0 =
{

x
∣∣ ∀x, y ∈ Cd0 : d(x, y) ≤ d0

}
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5. Performance Evaluation Tests for Local Refinements

In the following, the efficiency of the proposed intra-cluster level route improvement approach is
investigated. The main question is to what extend can the intra-cluster level reordering improve the
shortest tour found so far. For the performance analysis, a series of tests were executed.

Our tests focused on the operations where the proposed cluster level refinement method
may provide an improvement against the competitor methods. There are three main areas where
IntraClusTSP can be applied to improve the optimization performance:

(a) General refinement of initial tour using arbitrary internal/local TSP optimization method;
(b) Application of refinement for a specific local area;
(c) Incremental route generation.

In the case of incremental route generation, an existing node graph with optimal route is extended
with a new node. The task is to generate a new optimal Hamiltonian cycle involving the new node.
One solution is to consider the new graph as an independent new task and we use some existing batch
TSP optimization method. This solution requires a lot of redundant calculations as most part of the
tour remains unchanged. The incremental approach will perform only the required modifications
on the initial route, thus its time cost is significantly lower. Among the known TSP optimization
method, the NN algorithm is based on this incremental approach but it tests only a limited set of
neighbours to find best position of the new node. From this point of view, the IntraClusTSP method
can be considered as an improved version of the standard NN optimization method.

Based on the detailed analysis and performance comparison in Reference [21,28,51], the following
methods were implemented for route generation in the performance tests: (a) Nearest Neighbour direct
construction algorithm (NN); (b) GA-based refinement algorithm (GA); (c) Hierarchical GA-based
refinement algorithm (HGA); (d) Nearest insertion algorithm with refinement (N2); and (e) Chained
Lin-Kernighan refinement algorithm (LK).

5.1. Evaluation Methodology

We have selected two different node distributions to generate the input data set for the investigated
eTSP problem. The first version is the usual uniform data set distribution in the two dimensional
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Euclidean space. Most of the benchmark data sets in the well-known TSPLIB library (https://www.
iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95) have similar distribution characteristics.
In this case, the point locations are distributed within a two-dimensional square uniformly. The only
input parameter of the input set is the number of points (N). The second distribution model uses two
level distribution, that is, there is cluster level containing the cluster centres and there is node level
distribution for the point positions within the clusters. The elements of both levels are generated
with uniform random distribution. Here, the generation algorithm involves the following parameters:
number of the clusters (M), number of the points (N), radius of the clusters (r0).

In the tests, one execution step corresponds to a series of local refinement runs on all elements of
a partitioning. For example, if the domain is partitioned into M clusters, the execution step contains M
runs on all of the clusters. In the experiments, we have tested clustering with both non-overlapping
and overlapping clusters. The cluster shapes considered were circular with a given centroid and
radius. In the tests, a clustering is given with the following parameters. N: number of objects, positions;
M: number of clusters; r0: relative radius of the cluster; L: number of iterations.

Regarding the cluster construction for the refinement runs, we have used a QTC algorithm to
select a compact set of neighbouring positions. The mean value for the radius of the refinement clusters
was set to 15% of the diameter of the base region.

All performance tests were performed in R environment. The Concorde TSP Solver package
(http://www.math.uwaterloo.ca/tsp/concorde.html) was used to execute the Chained Lin-Kernighan
algorithm. Using this optimization method, we The Nearest insertion algorithm with two_opt refinement
was included from the TSP package. For execution of the GA optimization, the implementation of the
GA package was invoked into our test program. In the tests, we have selected the method “linkern”
for Chained Lin-Kernighan. Based on our experiments which are summarized in Table 1, this method
provides the best optimization quality. In the table, TL denotes the tour length value, while T is the
symbol for the execution time. Three Lin-Kerninghan variants were compared, beside linkern-variant,
also the nearest insertion and the arbitrary insertion variants were tested. The Nearest Neighbour and
the Hierarchical GA-based refinement algorithm were implemented directly.

Table 1. Comparison of the different Lin-Kernighan variants.

N TL Linkern TL Nearest TL Arbitrary T Linkern T Nearest T Arbitrary

600 18 23 20 1 2 1
1200 25 32 29 1 6 1
1800 31 39 35 2 36 1
2400 35 44 40 2 90 1
3000 39 50 45 3 150 2

5.2. Nearest Neighbour Direct Construction Algorithm

The goal of the first experiments was to evaluate the efficiency of IntraClusTSP refinement
algorithm for routes generated by the Nearest Neighbour method. The Nearest Neighbour direct
construction method has only one main algorithmic parameter, the distance matrix of the graph. In our
case, we have constructed the distance matrix from a point distribution using the Euclidean distance.
In the test, we have generated the initial route with the NN method, then we have applied a sequence
of IntraClusTSP refinement steps. The results for the data set parameters M = 324, r0 = 0.15 on a sample
with N = 6000 are shown in Figure 7a,b. According to the test results, the proposed cluster route
refinement algorithm improved the route length by 8%. As it is shown in the figure, the first refinement
cycle provides the largest improvement (about 5%). Based on the literature, the tour length generated
by the NN algorithm is about 25% above the theoretical optimum value, the result of the proposed
refinement is about 14% above the theoretical optimum. Considering the comparisons performed
in Reference [29], this result is a significant improvement of the original method. The optimal route
length as a function of the iteration count is shown in Figure 4. Considering the number of generated

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://www.math.uwaterloo.ca/tsp/concorde.html
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clusters, M, we can see that the IntraClusTSP method provides a better improvement for partitioning
with higher number of clusters.
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In Figure 8, two time cost functions are presented. The first function corresponds to the base NN
method (denoted by hollow circles) while the second shows the execution cost of IntraClusTSP (filled
circle). The second function corresponds to the case when M is equal to the calculated optimum value.
As it is expected, the total cost of optimizing the whole node set is higher than the cost to perform a set
of local optimizations for the covering cluster set.
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5.3. GA and Hierarchical GA Refinement Algorithms

In the GA based refinement algorithm, an individual route corresponds to a permutation of the
positions. The fitness of an individual is given with the corresponding tour length. The GA algorithm
uses the crossover, mutation and selection operators on the population of selected individuals. Based
on our experiences, if the number of population iterations is limited, the GA can provide only weaker
results, especially for GA with random initialization. In order to improve the search space, the route of
the NN direct optimization algorithm is taken as an element of the initial population. In the case of
hierarchical GA, the algorithm first performs a partitioning of the original position set into disjoint
clusters. In the next step, every cluster is considered as position represented by the centre point and
the optimal route on the cluster level is calculated. Then, for every cluster, a local tour optimization is
performed and finally the local optimal routes are merged into a global optimal route.

Based on the experiences, as it is shown in Figure 9, the random GA is significantly dominated
by the NN-initialized GA method. In the figure, the values related to the random GA are given with
hollow circles, while NN-initialized GA is denoted by filled circles. The GA algorithm is based on
the following main parameters: population size, probability of crossover, probability of mutation,
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maximum number of iterations to run before the GA search is halted and number of consecutive
generations without any improvement in the best fitness value before the GA is stopped. Based on
our preparation test, the population size has the largest effect on optimization efficiency. For a wide
range of N in our input, the optimal population size is near 40, we have used this parameter in our
comparison tests. Regarding the other parameters, the following settings was used: probability of
mutation: 0.2, probability of crossover: 0.7; maximal number of iterations: 500 and number of runs: 200.
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The results of the NN_GA can be improved by some percent using the hierarchical GA approach.
The corresponding results are given in Figure 10, where the filled circles denote the HGA method.
The proposed refinement method can reduce the tour length by 5–10%, similar to the base NN approach
(see Figure 11).
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5.4. Nearest Insertion Algorithm with Two_Opt Refinement

The Nearest insertion algorithm with two_opt refinement is the default solver in the TSP package
of R and it can provide a very good approximation of the optimal route. The Nearest insertion (NI)
algorithm chooses city in each step as the city which is nearest to a city on the tour. The NI and
two-opt algorithms does not require any special parameter to be set in our tests. Figure 12 shows the
measured efficiency comparison of the Nearest Neighbour method and the Nearest insertion with
two_opt refinement algorithm. In the figure, the following notations are used.
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The hollow circle denotes the Nearest Neighbour method, filled circle is for Nearest insertion
algorithm with two_opt refinement and hollow rectangle is the symbol for the theoretical optimum.
Although the efficiency is very good, we experienced a weakness of this algorithm too, the high
execution time. As it is shown in Figure 13, the execution time for the problem with N = 8000,
the required time is more than 200 times larger with tNN = 10 s and tNI+2opt = 2300 s.
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Based on this experiment, the method is not suitable for larger problems. In order to reduce the
execution costs, a hybrid approach was introduced in our tests. The proposed method first uses the fast
NN algorithm to create an initial route. Then, in the refinement phase, the Nearest insertion algorithm
with two_opt refinement is used for tour optimization at cluster level. Taking an iteration of cluster
level execution steps, we have created a fast and efficient algorithm.

The experiments prove that the proposed method can improve the efficiency of base method by
2–3% (see Figure 14) while the required execution time is only a small fraction of the base execution
time (Figure 15). In the experiments, the following parameter values were used: M is between 25 and
64; L: between 6 and 10 and r0 is equal to 0.15.
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5.5. Chained Lin-Kernighan Refinement Algorithm

According to the analyses [19,28], the Chained Lin-Kernighan refinement algorithm provides the
best solution for the TSP optimization problems. Its tour length efficiency is very near to the theoretical
optimum (the difference is only 1–2%). This superior efficiency is confirmed by our test experiments
too. In our tests, the LINKERN package was used to run the Chained Lin-Kernighan refinement
algorithm. The Chained Lin-Kernighan refinement method is an algorithm with many parameters.
In our tests, we have used the standard settings [52] with the following values: Kick value: random
walk; number of kicks: number of nodes; method to generate staring cycle: QBoruvka.

The cluster level refinement method can provide here only a tiny improvement. Based on our test
experiments, the average improvement ratio is 0.2%, the best result is a one percent improvement for an
input distribution with N = 60,000. Considering the fact that the result of the Chained Lin-Kernighan
refinement method is very near (1–2%) to the theoretical optimum, the case with 1% improvement is
an important achievement.

5.6. Convergence of the IntraClusTSP Refinement Method

In the tests to analyse the convergence of the proposed IntraClusTSP method, we have selected
the GA method with random initialization to generate the initial route. Regarding the convergence
efficiency of IntraClusTSP, the main determining factor is the applied algorithm for the cluster-level
optimization. The Chained Lin-Kernighan method applied in our proposal, provides a very fast
convergence. In Reference [53], the investigation of the route length—iteration step function has shown
that in the first 20% of the total running time, the optimization process provides 80% improvement
and the rest 80% of the time yields 20% improvement. In our cluster-level refinement approach,
the convergence rate is influenced by the following factors:
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- size of the cluster (large clusters can provide larger improvements but they require larger
execution time)

- quality of the cluster-level route (the quality shows how far is the length of the current route from
the optimal length)

As the average quality of the graph increases during the refinement process, the convergence rate
will decrease as it is shown also in the referenced paper.

In our convergence tests, we have used random cluster selection. In every iteration step, only one
cluster was processed. In the tests, the following parameter settings were used:

N (number of nodes): 400, 800, 1200
r (relative radius of the clusters): 0.1, 0.2, 0.3
m (number of iteration steps): 25

Our test results can be summarized in the following points:

- Similar to the convergence of the base LK method, the convergence ratio is significantly larger in
the first few iteration steps. In Figure 16, a sample convergence example is presented as a route
length—iteration count function for the input parameters (N = 400, r = 0.2)

- The convergence ratio is larger for larger cluster sizes. Figure 17 shows the comparison run
for three different cluster size values. The bottom (solid) line belongs to r = 0.3 (large clusters);
the middle (dashed) line relates to r = 0.2 and the top (dotted) line belongs to r = 0.1. The reason
of the fact that the curves may have local plateau is that the clusters are selected here randomly,
thus there is a chance to select areas already processed before. In this case, only little improvement
can be achieved.

- The convergence as relative length reduction is not very sensitive to the graph size but as
the experiments show, in larger graphs we can achieve larger length reduction and a better
convergence. In Figure 18, the results for three different sizes are summarized. The bottom (solid)
line belongs to N = 1200 (large graph); the middle (dashed) line relates to N = 800 and the top
(dotted) line belongs to N = 400.
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6. Performance Evaluation Tests for Incremental TSP

In the following, we compare IntraClusTSP with Chained Lin-Kernighan method and with the
Random insertion methods from the viewpoint of both time cost and route length optimization
efficiency. We have involved the following algorithms into the tests:

- Random insertion with random position (RR);
- Random insertion with smallest single distance (RS);
- Random insertion with smallest route length increase (RI);
- Random insertion with smallest single distance with IntraClusTSP refinement (RCI);
- Chained Lin-Kernighan method on the whole graph (LK).

In the case of RR, the position of the new node in the route is selected randomly.
First, we investigate the insertion of a single new node into the current optimal route. Considering

the route length optimization, we have experienced that in this simple case, all methods provided
about the same result. Thus, there were no significant differences between the investigated methods,
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only the RR method had a worst time optimization value. In the tests, the method RR provided a
very low efficiency as it is shown in Table 2 and Figure 19. The input node distribution was generated
with uniform distribution within a rectangle area. The size of the graph was running from 1000 to
10,000. The proposed IntraClusTSP algorithm provided a better result than known insertion methods.
In Figure 19 we present the cost difference between the new and old tour versions for the insertion
algorithms and for the Chained Lin-Kernighan method. The presented values are the average values
related to samples of size 10.

Table 2. Average tour length increase.

Method Increase

RR 1253
RS 17
RI 11

RCI 9.3
LK −1.2
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In the next experiments, we investigated the efficiency for insertion sequences, when 200 new
elements are inserted into the graph. For the case of single insertion, is proven that our algorithm
provides a better result in general but the difference tends to decrease as the size of the initial tour
increases. In the case of insertion sequences we may get a different result, as standard insertion
methods (RS, RI) can modify only one edge in the original tour, while RCT can perform a larger scale
modifications during the same amount of time.

In the tests on insertion sequences, we have selected three kinds of training set. The first is the
uniform random distribution (UDT) while the two others (TSPLIB_fin10639 and TSPLIB_xql662) belong
to the TSPLIB data repository. For the TSPLIB_fin10369 data set (http://www.math.uwaterloo.ca/tsp/
world/countries.html) we performed two experiments with different initial tour sizes. The test results
are shown in Figures 20–23. In Figure 20 which relates to the uniform random distribution, the bottom
dot-dashed line belongs to the Chained Lin-Kernighan method which is a batch method. For this
method, the line is a linear approximation, only the values at the start and end positions are measured.
For the incremental methods, all values are measurement results. The second solid line denotes the
proposed IntraClusTSP method. The next line relates to the RI (Random insertion with smallest
route length increase) algorithm and the weakest result is given by the RS (Random insertion with
smallest single distance) method. Similar efficiency order can be observed by the other experiments
too. Figure 21 relates to dataset fin10639 on the size interval 5000–5200. Figure 22 shows the tour length
values for the size interval 10,000–10,200 of the same data set. In Figure 23, the measured tour length
values are presented for the TSPLIB xql662 dataset (http://www.math.uwaterloo.ca/tsp/vlsi/).

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/vlsi/
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In Figure 24, the time costs are compared. The largest cost belongs to the Lin-Kernighan method,
the cost function of NN shows a very similar characteristics. The incremental route update using
the IntraClusTSP algorithm requires only 0.5 s for the graph with N = 10,000. In case of Random
insertion with smallest route length increase algorithm on the fin10369 dataset, required 10 s, which is
a significant difference.

The test results proved that the proposed IntraClusTSP significantly dominates the random
insertion algorithms on the field of incremental TSP construction, regarding both optimization
efficiency and execution costs.
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7. Application in Data Mining

The proposed IntraClusTSP algorithm can be used also in the context of data analysis to support
clustering A cluster group consists of elements similar to each other. A key factor in clustering is
the quality of the clustering (how similar are the objects within a cluster to each other) [54] and the
number of the clusters. Usually, the users should set this number either directly or indirectly in
advance as an input parameter of the clustering process. For example, in the case of k-means clustering,
the number of required clusters is fixed in advance. The determination of the appropriate number of
clusters, is considered as a fundamental and largely unsolved problem [50]. In the literature, we can
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find numerus approaches like Silhouette statistics [55], gap-statistics [56] or Gaussian-model based
approach [57].

In this section, we present an algorithm based on TSP optimization to support the determination
of the optimal number of clusters. The proposed method is based on the following considerations. As it
was shown in Section 3, the shortest path usually connects the elements located in the neighbourhood.
Thus, the distances between adjacent elements belonging to the same cluster, should be small. On the
other hand, if the adjacent element belongs to different cluster, the distance should have a large value.
Thus, a relatively large distance in the optimal route should mean a gap, a connection from a cluster to
another cluster. Based on these considerations, we evaluate the distance function between two adjacent
elements of the optimal route to determine the clustering structure.

The proposed method is based on the analysis of the corresponding edge length histogram.
Having this histogram, we consider it as a mixture of normal distributions and we can perform
a Gaussian Mixture Density Decomposition (GMDD) [58]. In GMDD, having the current density
function, we first determine the location of the maximum density and we fit a Gaussian distribution
with maximum overlap. This Gaussian is added to the components’ list and this component is removed
from the current input distribution. If this reduced density is a not a zero function then it will be
analysed in the same way. Figure 25 shows the result of a sample GMDD process.
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Having the GMDD spectrum, we have to determine those components which belong to different
clustering levels. In our model, we consider an edge as cluster level connection if its length is
significantly larger than the average length of the intra-cluster connections:

lc > ∝ li

The parameter ∝ is considered as an input parameter of the algorithm. Based on our experiments
with human observers, we take value 2 as default value of alpha. Our tests show that the point
distribution in Figure 26a (lc = li) is usually considered as single cluster while the points in Figure 26b
(lc = 2 li) are considered to belong to two clusters.
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Thus, if the length difference between two elements in the corresponding edge length histogram
is significantly larger than the average length of the previous level, then the larger element will belong
to a new clustering level. The algorithm to calculate the cluster counts for different levels can be
summarized in the following steps.

Algorithm 3: Histogram of edge length containing M bins

1: CL := cluster level descriptors;
2: g : = 0; // cluster level index
3: for each i in (1 to M) do
4: b := H[i]; // current bin
5: b.count := count of edges in the bin
6: b.length := average edge length in the bin
7: bp := the previous not empty bin
8: if b.count > 0 then
9: L_g := the average edge length in the current cluster level CL[g];
10: L_a : = b.length – bp.length;
11: if L_a > alpha * L_l then
12: g = g + 1; //create a new cluster level
13: add b to CL[g];
14: else
15: add b to CL[g];
16: end if
17: bp : = b;
18: end if
19: end for
20: Calculate the GMDD distributions for the cluster levels

In the following, we present the application of the algorithm on an example distribution.
Figure 27 denotes the initial distribution of the graph nodes. Can be detected two clustering

levels. At the first level, there are 12 small clusters, while the second level contains three large clusters.
The calculated shortest path is denoted by red line. The generated edge length histogram with the
GMDD spectrum is presented in Figure 28, where the corresponding edge-length function is given in
Figure 29. The first large peak belongs to the base level, here we have 120 elements in the distribution.
The second peak denotes the first cluster level with the small clusters and the last component relates to
the level of the large clusters. Table 3 summarizes the main parameters of the discovered clusters.
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Table 3. Cluster level parameters.

Parameter Level 0 Level 1 Level 2

Mean length 10.8 81.4 497.5
Standard deviation 5.7 33.5 33.5

Size 120 12 3

As the results show the method discovered the multi-level clustering structure in the
input distribution.

We have compared our algorithm with two widely used methods for determining cluster count.
The first investigated method uses the Silhouette index [59] approach. This index prefers small
intra-cluster distances and it is defined in the following way for a partitioning with clusters (C1, . . . , Ck):

Sk = 1
N ∑k

i = 1 Si

Si = bi−ai
max(bi ,ai)

C′ i : the parent cluster of object i

d(i, C′) : average dissimilarity of object i to all objects in cluster C′

ai = d(i, C′ i)

bi = minC 6=C′ i{d(i, C)}
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The cluster count is the k value, where the value Sk is maximum optimum:

K = argmaxk{Sk}

The second investigated method is the gap statistic method [55] Estimating the number of clusters
in a data set via the gap statistics. The method calculates the goodness of clustering measure by the
“gap” statistic.

The E[log(Wk)] value is calculated via bootstrapping, that is, simulating from a reference
distribution. A sample calculated gap statistic value in dependency of cluster count k is shown
in Figure 30. There are different approaches to determine the cluster count K from the gap function,
like the first maximum or the global maximum.Symmetry 2018, 10, x FOR PEER REVIEW  26 of 29 
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In the comparison tests, the factoextra and cluster packages of R were included to perform
the silhouette and gap statistic calculations. In the generated data distributions for the evaluation
test, the objects are arranged into either a single-level or a two-level clustering structure. For the
comparisons, we have generated Table 4 describing the typical test results has the following structure:

1. column (observed): the real clustering structure observed by humans. The column contains one
or two numbers. The first number denotes the number of clusters at the first clustering level,
while the second value is the cluster counter of the second level.

2. column (gap-A): cluster count proposed by gap analysis using the first maximum
optimum criteria;

3. column (gap-B): cluster count proposed by gap analysis using the Tibs2001Semax
optimum criteria;

4. column (silhouette): cluster count given by the Silhouette method;
5. column (multi-level GMDD): cluster count calculated by our proposed multi-level

GMDD-based method;
6. column (time [silhouette]): the execution time of the Silhouette method in milliseconds;
7. column (time [gap]): the execution time of the gap statistics method in milliseconds;
8. column (time [ml GMDD]): the execution time of our proposed multi-level GMDD method

in milliseconds.
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Table 4. Comparison of the calculated optimal number of clusters.

Observed Gap A Gap B Silhouette Multi-Level
GMDD

Time
[Silhouette]

Time
[Gap]

Time
[mL GMDD]

12 + 3 14 3 5 12+3 52 2890 1
12 + 3 14 3 4 12+3 57 2991 1

1 32 3 3 1 52 1850 1
1 32 3 3 1 53 1859 1
5 20 11 4 5 54 1920 1
5 32 7 2 7 54 1950 1
5 20 11 4 5 42 2010 1
6 32 9 2 6 56 1980 1

6 + 2 32 7 3 7 + 2 47 1940 1

The test results in the comparison of the alternative methods can be summarized in the
following experiences:

- Only our proposed method can discover the multi-level clustering structure, while the current
standard methods are aimed at determining the cluster count of the first clustering level.

- In most cases, the proposed method could discover the hidden clustering structure.
- Our proposed method could provide the best accuracy in all test cases.
- The proposed method requires significantly less execution time.

8. Conclusions

The proposed cluster level tour refinement method called IntraClusTSP provides a novel approach
to improve the existing heuristic eTSP solution methods. IntraClusTSP takes an initial tour and then
performs tour optimization for a selected set of node clusters. In the last phase, the local optimal tours
are then merged into a global optimal tour. Based on the performed evaluation tests the proposed
method can improve the tour efficiency for every tested base methods (Random insertion with random
position; Random insertion with smallest single distance; Random insertion with smallest route length
increase; Random insertion with smallest single distance with IntraClusTSP refinement; Chained
Lin-Kernighan method on the whole graph). IntraClusTSP performs intermediate level optimizations
requiring smaller execution costs than a global level optimization. The proposed IntraClusTSP method
can be used to

• refinement of existing routes;
• extension of any existing TSP optimization methods;
• perform a region-level refinement in large graphs;
• implement an efficient incremental route construction method.

For these cases, the proposed method can improve not only the tour length but also the execution
time. The generated shortest Hamiltonian path can be used also in data analysis to determine the
optimal number of clusters. Our proposed method is based on a novel approach, an adjusted GMDD
analysis to determine gaps in the corresponding edge length histogram. Unlike the standard methods,
the proposed method can discover also multi-level clustering structure and provides an outstanding
performance both in accuracy and execution time.

The proposed cluster level tour refinement method provided very good efficiency and execution
time characteristics in our base level experiments. Our plan is to perform further analysis to

• investigate the application for real life TSP problems;
• adapt the proposed algorithm to specific TSP problems like multi-level vehicle routing problem

in logistics;
• discover the deeper behaviour of the corresponding permutation space.
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Abstract

We propose a novel metric called MetrIntMeas (Metric for the Intelligence Measuring) for an accurate and robust measurement of the
difficult problem-solving intelligence of a swarm system. The metric allows the classification if a swarm system belongs to the same class
with the systems which have a specific reference intelligence value. For proving the efficiency of the proposed metric we realized a case
study on a swarm system specialized in solving a NP-hard problem. As an application of the proposed metric, we present the measure-
ment of the swarm systems’ evolution in intelligence. We gave a new definition to the intelligent evolving systems. The evolution of intel-
ligent systems can be verified using the proposed MetrIntMeas metric.
� 2017 Elsevier B.V. All rights reserved.

Keywords: Intelligent system; Collective intelligence; Cognitive system; Measuring machine intelligence; Intelligent evolving system; Computational hard
problem
1. Introduction

Many real life problems are difficult to be solved by
computing systems. Difficulty in a problem solving may
consist in aspects, like: the description contains missing
or erroneous data; the solving is computationally difficult,
it is NP-hard for example (Leeuwen, 1998). The efficient
and flexible solving of many computational problems is
based on cooperative swarms of agents. Recently, many
artificial swarm systems were developed, some of them
being used for difficult problem-solving (Mamei,
Zambonelli, & Leonardi, 2003; Stradner et al., 2013). Most
of them are inspired by the collective intelligence of rela-
http://dx.doi.org/10.1016/j.cogsys.2017.04.006
1389-0417/� 2017 Elsevier B.V. All rights reserved.
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tively simple living creatures like the insects. As examples
of such designed swarm systems, we mention: ants
algorithms (Dorigo, Maniezzo, & Colorni, 1996), bees
algorithms (Akay & Karaboga, 2012) and flocking of birds
(Feder, 2007). In most artificial swarm systems the individ-
uals from the swarm operate as artificial agents, without
cognitive capacity and intelligence. Many researches
(Brady, Fisher, Schultz, & Ward, 2014; Johnson et al.,
2013; Grosz & Hunsberger, 2006; Theiner, Allen, &
Goldstone, 2010) prove that even very simple cooperating
agents at the level of the system in which they operate
could have an increased intelligence.

There are very few designed metrics that could effec-
tively measure the systems’ intelligence. Each of such devel-
oped metrics is based on some considerations related to the
intelligence, based on different approaches for obtaining

http://dx.doi.org/10.1016/j.cogsys.2017.04.006
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the measure of machine intelligence. Winklerová (2013)
proposes the collective intelligence of the particle swarm
system, assessing it according to some kind of proposed
Maturity Model. Anthon and Jannett (2007) consider the
agent-based systems intelligence based on the ability to
compare alternatives with different complexity. Fox,
Beveridge, and Glasspool (2003) designed a benchmark
cognitive BDI agent (with Belief-Desire-Intention architec-
ture) model that can be used for comparing agents intelli-
gence. Chmait, Dowe, Green, Li, and Insa-Cabrera
(2015) proposed a metric considered universal, appropriate
to make an empirical intelligence measure of different
agents. Hernández-Orallo and Dowe (2010) proposes the
idea of a general test called universal anytime intelligence
test, which should be able to measure the intelligence level
(any low or any high) of any biological or artificial system.
Hernández-Orallo, Dowe, and Hernández-Lloreda (2014)
studied the development of universal metrics for measuring
the capabilities of cognitive systems, concluding that such
metrics should be inspired by the psychometrics used for
measuring the human cognitive capacities. Schreiner
(2000) presents a theoretical study realized by the US
National Institute of Standards and Technology (NIST)
related to creating standard measures for intelligent sys-
tems, outlining the question on how precisely intelligent
systems are defined and how to measure and compare the
capabilities that intelligent systems should provide.
Hibbard (2011) proposes a measure of intelligence based
on a hierarchy of sets of increasingly difficult environ-
ments; based on this approach an agent’s intelligence is
measured according to the ordinal of the most difficult
set of environments that may occur. Chmait et al. (2015)
present a study related to the intelligence of multiagent sys-
tems, focused on the research question related to influenc-
ing the intelligence by the communication and observation
abilities of the member agents.

Elaborated metrics presented in the scientific literature
do not take into account in the intelligence evaluation
aspects like: variability in intelligence (higher and lower
intelligence). We consider that if the variability is not taken
into account in a swarm system, in some situations this
could result even in the appearance of erroneous evalua-
tions of the intelligence. Different experimental evaluations
usually lead to different results. Elaborated metrics pre-
sented in the literature do not take into account the statis-
tically extremely high and statistically extremely low
intelligent measures, which we call outlier intelligence val-
ues. We consider that outlier intelligence values should
not always be taken into consideration, based on the fact
that they could lead to erroneous machine intelligence quo-
tient evaluations.

In this paper, we propose an accurate and robust math-
ematically grounded metric called MetrIntMeas (Metric for

the Intelligence Measuring) for measuring the difficult
problem-solving intelligence of a swarm of agents that
cooperate with each other. The type of measured intelli-
gence should be established by the human evaluator who
would like to obtain the intelligence quotient of the swarm
called CIM (Central Intelligence Indicator). A swarm could
be a whole cooperative multiagent system or a part of it – a
coalition. Some of the member agents of a multiagent sys-
tem could form a coalition in order to more efficiently solve
the problems by joint collaboration. A multiagent system
could be formed by more cooperative swarms. We define
the notion CIM (Central Intelligence Indicator) the indica-
tor of a swarm system’s central intelligence tendency. For
demonstrating the effectiveness of the metric, we conducted
an illustrative case study. A swarm system, formed by reac-
tive agents that cooperate based on some simple rules, able
to solve the TSP (Traveling Salesman Problem) was stud-
ied. TSP is an example of NP-hard problem, formulated
in 1930 (see for example Crisan, Pintea, & Palade, 2016).
For different solutions offered to this problem’s solving
see the ‘‘TSP world tour”, last updated on September
2013 that illustrates the wide effort put in this problem
solving.

There are many studies in the scientific literature that
describe systems able to evolve (Blazic, Skrjanc, &
Matko, 2014; Liang, Hu, & Kasabov, 2015; Lughofer,
Cernuda, Kindermann, & Pratama, 2015). In this paper,
we give a new definition to intelligent evolving systems, a
class of evolving systems. In the realized case study, we
proved by using the MetrIntMeas metric, that the studied
swarm system does not pass an evolutionary step.

The upcoming part of the paper is organized as follows:
Section 2 presents details related to the proposed MetrInt-

Meas metric for measuring the swarm intelligence; in Sec-
tion 2.1 the MetrIntMeas metric as an algorithm is
presented; Section 2.2 presents the establishment of the ref-
erence intelligence value to which the MetrIntMeas metric
compares a studied swarm system’s intelligence; in Sec-
tion 2.3 the intelligence indicator calculation based on a
measure with more intelligence evaluation components is
presented. Section 3 presents a case study for validation
of the proposed metric. In Section 4 the application of
the MetrIntMeas for measuring an intelligent swarm sys-
tem’s evolution is presented. Section 5 presents the discus-
sion related to the performed research. In Section 6 the
main conclusions of the research are presented.

2. A novel metric for measuring a swarm system’s

intelligence

2.1. MetrIntMeas the proposed metric for measuring of

swarm intelligence

In the following, we propose a novel mathematically
grounded accurate and robust metric called MetrIntMeas

(Metric for the Intelligence Measuring). It is appropriate
for measuring the problem-solving intelligence of a swarm
system. We consider the agent notion based on the defini-
tion given by Russell and Novig (1995). Definition: ‘‘An
agent is anything that can be viewed as perceiving its envi-
ronment through sensors and acting upon that environ-
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ment through effectors”. We call swarm system a coalition
of agents (or swarm multiagent system) situated in the
same environment able to communicate with each other,
which cooperatively solve each undertaken problem.

In our study, the intelligence is considered from the dif-
ficult problem-solving point of view (computational intelli-
gence in difficult problem-solving). The type of measured
intelligence should be defined by a human evaluator that
would like to obtain the intelligence quotient of the swarm.

For example, in the case of a robotic swarm, he/she
could consider the intelligence:

� In the collection of objects: A problem that the swarm
should solve consists in the collection of a set of dis-
tributed objects.

� In the distribution of objects: A problem that the swarm
should solve consists in the distribution of a set of
objects to distributed sources.

We denote a studied swarm system with SWM,
SWM = {SW1, SW2, . . ., SWn}. SWM is composed of a
group of cooperative agents denoted SW1, SW2, . . .,
SWn. |SWM|, |SWM| = n denotes the cardinality (number
of agents) of SWM.

The algorithm Metric for the Intelligence Measuring pre-
sents our proposed MetrIntMeas metric for measuring the
computational intelligence of difficult problem-solving.
Probl = {Pr1, Pr2, . . .., PrN} denotes the problems set that
is used for the obtaining of the intelligence indicators. Sam-

pleInteligence = {SI1, SI2, . . .., SIN} denotes the measured
intelligence indicators sample obtained during the intelli-
gence measurements. SI1 denotes the measured intelligence
indicator obtained by Pr1 solving; SI2 denotes the mea-
sured intelligence indicator obtained by Pr2 solving; . . ..
SIN denotes the measured intelligence indicator obtained
by PrN solving. |SampleInteligence| = |Probl| = N denotes
the SampleInteligence sample size. Df = N�1 denotes the
degrees of freedom of SampleInteligence. MetrIntMeas

compares the SWM system’s intelligence with the given ref-
erence intelligence value denoted RefIntellig.

In the MetrIntMeas algorithm the following notations
were used:

� ‘‘@” denotes the effectuation of more calculus. For
example: ‘‘@Apply the One Sample T-test”, denotes
the application of the calculus specific to the One Sam-
ple T-test described in the scientific literature.

� Decision contains the decision related to the considered
SWM system’s intelligence in comparison with
RefIntellig.

� CV denotes the Coefficient of Variation.

Indic used in the frame of the algorithm indicates how
the CIM (Central Intelligence Indicator) is calculated. If
the SampleInteligence data is normally distributed (sam-
pled from a Gaussian population), then we consider the
mean, Indic = ”Mean”, CIM = mean(SI1,SI2,. . ..,SIN), as
the most appropriate. Elsewhere, we consider the median
Indic = ”Median”, CIM = median(SI1, SI2, . . .., SIN) as
the most appropriate. HE is responsible for the establish-
ment of the type of intelligence wished to be evaluated.
HE establishes Probl the problems set that will be used in
the intelligence measurements.

MetrIntMeas: Algorithm Metric for the Intelligence

Measuring

IN: RefIntellig; SWM

Out: N; SampleInteligence={SI1, SI2,. . .... . ., SIN};
Indic; Decision

Step 1. Determination of the sample size

@Calculate N as the necessary sample size of Probl.
@HE establishes Probl={Pr1,Pr2,. . ..,PrN}.
Step 2. Calculation of the intelligence indicators.

@Calculates the SampleIntelligence by evaluating the
Probl solving intelligence.

Step 3. Statistical analysis of the obtained intelligence
indicators.

@Makes a statistical characterization of the
SampleInteligence.

@Calculates the CV of the SampleInteligence.
Step4. Hybrid decision for the elimination of the outlier

intelligence value(s).

Decision_het:=”NO”.

If (CV > 30) then
//is requested toHE to take a decision related with the
OIVs elimination.
@HE elaborates the Decision_het.

EndIf
If (Decision_het=’YES’) then
@Eliminate the OIVs using an outlier’s detection test.

EndIf
Step5. Verification of the SampleInteligence data
normality.

@Verify if SampleInteligence is normally distributed.
Step6. Application of a statistical test for the verification

of equality

@Formulate H0I (Null Hypothesis of the Intelligence).
@Formulate HAI (Alternative Hypothesis of the
Intelligence).

If (SampleInteligence data is normally distributed) then
Begin

Indic:=”Mean”.
@Calculates the CIM as the mean of
SampleInteligence data.
@Apply the ‘‘One Sample T-test”.
@Obtain the P-value as the ‘‘One Sample T-test”
result.
End

Else

Begin

Indic:=”Median”.
@Calculates the CIM as the median of

SampleInteligence data.
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@Apply the ‘‘Wilkoxon Rank Sum test”.
@Obtain the P-value as the ‘‘Wilkoxon Rank Sum

test” result.
End

EndIf
Step 7. Interpretation of the intelligence evaluation results

If (P-value>a_metr) then
Begin

//A differentiation in intelligence cannot be realized.
@Accept H0I.

@SWM intelligence is statistically equal with the
reference RefIntellig.
End

else

Begin

//Reject H0I - a differentiation in intelligence can be
realized.
@Accept HAI.

If (CIM < RefIntellig) then
@”SWM is less intelligent than the reference

intelligence RefIntellig.”

Else
@”SWM is more intelligent than the reference

intelligence RefIntellig.”

EndIf
End

EndIf
@Presents the calculated CIM
EndMetricIntelligenceMeasuring

For the verification of the normality different statistical tests
can be applied. The most frequently used are the (Razali &
Wah 2011): Kolmogorov–Smirnov test (Chakravarti, Laha,
& Roy, 1967; Lilliefors, 1967, 1969); Shapiro–Wilk test
(Shapiro & Wilk, 1965); Lilliefors test – based on the Kol-
mogorov–Smirnov test (Dallal & Wilkinson, 1986;
Lilliefors, 1967; Lilliefors, 1969) and Anderson–Darling test
(Anderson & Darling, 1952; Stephens, 1974, 1986). The
Two-Sample Kolmogorov–Smirnov test is used for
comparison if two data sets are sampled from the same dis-
tribution. The One Sample Kolmogorov–Smirnov
Goodness-of-Fit test is applied for the verification of the
data normality. In our study, we refer the One Sample
Kolmogorov–Smirnov Goodness-of-Fit test.

Razali and Wah (2011) presented a comparative analysis
of the Kolmogorov–Smirnov, Shapiro–Wilk, Lilliefors,
and Anderson–Darling tests. The conclusion of the study
was that Shapiro–Wilk has the best power for a given sig-
nificance, followed closely by Anderson–Darling.

Stephens (1974) proved that Kolmogorov–Smirnov
Goodness-of-Fit One Sample test is less powerful for test-
ing normality than the Shapiro–Wilk test or the Ander-
son–Darling test, but he outlined that it has some
disadvantages. One of the disadvantages of the Shapiro–
Wilk test consists in the fact that it does not work well with
many identical values.
We propose for the normality testing the application of
the both tests, the Kolmogorov–Smirnov Goodness-of-Fit
One Sample test, and the Shapiro–Wilk test. This proposal
has as rational the maintaining of the generality of the
MetrIntMeas metric.

We call Null Hypothesis of the Intelligence denoted in
the algorithm as H0I, the statement that the sample CIM

is equal from the statistical point of view with RefIntellig.

This conclusion can be formulated; SWM intelligence is
equal from the statistical point of view with RefIntellig.
We call Alternative Hypothesis of the Intelligence and
denote it with HAI the hypothesis that the CIM is different
from the statistical point of view from RefIntellig. This
conclusion can be formulated; SWM intelligence is differ-
ent from the statistical point of view from the RefIntellig.
The testing of H0I and HAI should be realized with a sig-
nificance level denoted a_metr.

The Step1 of the MetrIntMeas algorithm indicates the
establishment of the sample size N (|SampleInteligence| = |
Probl| = N) based on a mathematical a priory calculus.
The calculus includes: the number of Tails (could be 1 or
2); Effect size (denoted D); a_metr (probability to make a
type I error); b_metr (probability to make a type II error);
TP (test power) = 1�b_metr. We considered as many
times the most appropriate: using the test with two tails;
a_metr = 0.05; b_metr = 0.2; TP = 0.8. The output of the
calculus was the Df (|SampleInteligence|�1) and d (the
Noncentrality Parameter). A central distribution describes
how a test statistic is distributed when the tested difference
is null. The noncentral distributions describe the distribu-
tion of a test statistic when the null is false. A noncentrality
parameter is families of probability distributions that are
related to other families of distributions (‘‘central” families
of distributions) (Dodge, 2003).

a_metr represents the probability of rejecting H0I when
it is true. a_metr is a parameter of the algorithm. We pro-
posed for a_metr, in most of the cases the value
a_metr = 0.05. b_metr denotes the probability to make a
type II error. A type II error is the failure to reject a false
null hypothesis (incorrect failure to reject a false null
hypothesis). We denote with TP the test power. We pro-
pose as many times the most appropriate b_metr = 0.2,

TP = 0.8. We suggested these values for a_metr and b_metr

based on the type I and type II errors and the relation
between them. A type I error is detecting an effect that is
not present, while a type II error is failing to detect an effect
that is present. D (the effect size) is another important sta-
tistical indicator, which allows the quantitative measure-
ment of the strength of a phenomenon (Kelley &
Preacher, 2012). Cohen gives as a guideline for the effect
size the following values (Cohen, 1992): Small effect size

between 0.2 and 0.3; Medium effect size around 0.5; Large
effect size for 0.8 or higher value.

The sample size is finally established based on the sam-
ple size calculation result and taking into consideration the
cost of the experimental measurements of the intelligence
(1). For example, we consider a swarm of robotic agents
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that operate in a physical environment by searching for
objects. The realization of experimental intelligence mea-
surements has a cost, related to: time for realization of
the measurements and/or resource consumption, and some
others.

CostðSampleIntelligenceÞ ¼ CostðSI1Þ þ CostðSI2Þ
þ ::::: þ CostðSINÞ ð1Þ

During the statistical analysis of the intelligence, as first
step a statistical characterization should be realized (Mann,
1995; Nick, 2007) by calculating for the SampleIntelligence

data the values for the most important statistical indica-
tors. Mean (Mean = (SI1 + SI2 + . . ..+SIN)/N); Standard
Deviation (SD); Variance (Variance = SD2); SE (Standard
Error of the Mean), SE = SD/sqrt(N), where sqrt denotes
the square root; Median (is the ‘‘middle” of a sorted list of
numbers); Mode (the most frequent value); Kurtosis (Kur-
tosis is a measure of whether the data are heavy-tailed or
light-tailed relative to a normal distribution); Skewness (is
a measure of the lack of symmetry); Minimum(the smallest
value); Maximum(the highest value); and CL (Confidence
Level), Lower CI, Upper CI. In most of the cases, we pro-
pose the choosing of the 95.0% confidence, CL = 95%.
CV (Coefficient of Variation), CV = 100 � (SD/Mean).

CV indicates the homogeneity-heterogeneity of the Sam-

pleInteligence. We consider the data classification based on
the variability, as was proposed by Marusteri and Bacarea
(2010). CV 2 [0,10) indicates homogeneous data; CV 2
[10,30) indicates relatively homogeneous data; CV � 30
indicates heterogeneous data. The statistical characteriza-
tion could be appropriate for an evaluator to formulate
some additional characterization of a system’s intelligent
behavior. For example, in the case of homogeneity (deci-
sion that could be taken based on the CV value), it is
expected that the system does not present high variations
in intelligence.

Step 4 of the algorithm indicates that if the data is
heterogeneous, then a hybrid decision is realized (a com-
bined human-computing system decision) for approving
or declining on the application of an outlier’s detection
test. If SampleInteligence is heterogeneous HE is asked to
decide if he/she agrees or not with the outlier intelligence
values elimination. The rationale for this hybridization is
based on the fact that HE (being a human specialist)
detains some problem and system specific knowledge that
allows a better decision taking than an automatic decision.

There are many tests described in the scientific literature,
for the outliers detection like: Peirce’s criterion (Stigler,
1978), Grubbs test (Barnett & Lewis, 1994; Grubbs,
1950), Dixon’s Q test (Dean & Dixon, 1951) and Chau-
venet’s criterion (Ross, 2003; Zerbet & Nikulin, 2003).
We chose for our research the Grubbs test for outliers
detection applied with significance level a_out = 0,05. At
an application, the Grubbs test is able to detect a single
outlier. Based on this fact, when applying the test, if an
outlier value is detected, then the outliers detection test
could be applied again. At a new application, it is possible
to detect other outliers. This test could be repeated recur-
sively until no outlier value is detected.

For the H0I testing, we consider as the most appropriate
(see the Step 6 of the algorithm) the application of the One

Sample T-test (Marusteri & Bacarea, 2010) in the case of
normally distributed data. For the H0I testing, we consider
as the most appropriate (see the Step 6 of the algorithm)
the application of Wilkoxon Rank Sum test (Marusteri &
Bacarea, 2010) in case of data that is not sampled from a
Gaussian distribution. The ‘‘One Sample T-test” and the
‘‘Wilkoxon Rank Sum test” allow the examination of the
CIM difference from the RefIntellig.

Finally, as output, the Algorithm Metric for the Intelli-
gence Measuring calculates the SWM system’s CIM, and
establishes if this is statistically equal, lower or higher with
the initially given RefIntellig reference intelligence indica-
tor. The proposed metric also allows the classification. In
case of a given reference intelligence value, it establishes
if the considered swarm system belongs or not to the same
intelligence class.

2.2. Establishment of the reference intelligence value

In the previous section, we presented the MetrIntMeas

metric for the comparison of a swarm system’s intelligence
with a specified reference intelligence indicator, denoted
RefIntellig (if the studied swarm system belongs to the
intelligence class indicated by the RefIntellig). Now, we
present the algorithm called Reference Intelligence Indica-
tor Establishment for the determination of the RefIntellig

value. In the algorithm the following notations are used:
SWMB denotes the considered swarm system used in order
to calculate RefIntellig; M denotes the sample size of the
intelligence indicators; ProblB = {Pr1,Pr2,. . ..,PrM}
denotes the problems used in the intelligence indicators
measuring; ExprimReference = {SI1, SI2,. . ., SIN} the intel-
ligence indicators obtained as result of the ProblB solving
intelligence measurements.

Algorithm Reference Intelligence Indicator Establishment

IN: SWMB; ProblB={Pr1,Pr2,. . ..,PrM}
OUT: ExprimReference={SI1, SI2,. . .... . ., SIM};
RefIntellig; Indic

Step1. Calculation of the intelligence indicators values.

@Calculates the ExprimReference indicators.
Step 2. Statistical analysis of the obtained intelligence

indicators.

@Calculates the CV of ExprimReference data.
Step3. Hybrid decision for the elimination of the outlier

intelligence value(s).
Decision_het:=”NO”

If (CV > 30) then
//HE takes a decision related to the OIVs elimination.
@HE decision Decision_het.

EndIf
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If (Decision_het=’YES’) then
@Eliminate the outlier intelligence values using an
outlier’s detection test.

EndIf
Step 4. Verification of ExprimReference data normality.

@Verify if ExprimReference is normally distributed.
If (ExprimReference data is normally distributed) then

Begin

Indic:=”Mean”.
@Calculates the RefIntellig as the mean of
ExprimReference data.
End
Else

Begin

Indic:=”Median”
@Calculates the RefIntellig as the median of

ExprimReference data.
End

EndIf
Step 5. Presentation of the obtained result.
@Presents the calculated RefIntellig.

EndReferenceInteligenceIndicatorEstablishment
2.3. Intelligence indicator based on more intelligence

evaluation components measure

The previous sections argued that our metric is appro-
priate for swarm systems, where an intelligence indicator
can be expressed as a single value. If necessary (could be
the case of more complex swarm systems), this intelligence
indicator can be calculated as a weighted sum of more ele-
mentary (could be or not atomic) intelligence evaluation
components measure. The intelligence evaluation compo-
nents and their weights should be identified by the human
evaluator. An intelligence evaluation component is an ele-
mentary factor that is considered to contribute to a
problem-solving intelligence evaluation measure. As exam-
ples of frequent intelligence evaluation components, we
mention: the problem-solving time, the obtained solution
accuracy, the capacity of handling different types of uncer-
tainties (erroneous or missing data) and some others. Eq.
(2) presents the general case when an intelligence indicator
denoted with SI is calculated as the weighted sum of r intel-
ligence evaluation components measure. The intelligence
components being denoted with 1, 2,. . ., r.

Just for illustrative purposes, we present as an example
an intelligent robotic swarm specialized in collecting and
distributing objects in a physical environment. A type of
problem that must be solved by the swarm consists of:

� TypeA-problem: collection of a set of distributed objects
in the environment;

� TypeB-problem: distribution of a set of objects in the
environment to different places.
The intelligence evaluation for a TypeA-problem

problem-solving consists in the evaluation of the intelli-
gence in the collection of a set of distributed objects. The
object collection intelligence could include as measurable
intelligence evaluation components:

Comp1) percent (%) of the successfully collected objects
(the collection of some objects could be missed).

Comp2) the duration of objects collection (until all the
required objects are collected or the collection is
interrupted).

Comp3) the amount of power consumption at the
swarm level. Power consumption is important in order to
maintain the autonomy in operation of the swarm.

Comp4) new information or knowledge learned by the
swarm during the problem solving. Learned information
or knowledge could help the swarm in the upcoming prob-
lems solving.

Comp5) measured efficiency in the most frequent obsta-
cles avoidance. Can be calculated as the average time of the
avoidance for example.

SI ¼ wg1 x ic1 þ wg2x ic2 þ . . .þ wgqx icr;

wg1 þ wg2 þ . . . ::þ wgr ¼ 1 ð2Þ
where: ic1, ic2,. . .,icr represent the considered intelligence
evaluation components measure at a problem-solving;
wg1, wg2,. . .,wgr represent the weights of the intelligence
evaluation components (wg1 corresponds to component 1;
wg2 corresponds to component 2; . . .. ; wgr corresponds
to component r). The weights indicate the importance of
the intelligence components in the establishment of the
problem-solving intelligence. wgk = wgj means that the
components k and j have the same importance in the quan-
titative value of the intelligence indicator. wgi < wgj means
that the component numbered i is less important than the
component j in establishing of the intelligence.

3. A case study for measuring a swarm system’s intelligence

using MetrIntMeas

In order to prove the effectiveness of the proposed
MetrIntMeas metric, we realized a case study. The TSP

(Traveling Salesman Problem) solving was considered, a
well known NP-hard problem (Crisan et al., 2016;
Leeuwen, 1998). The TSP can be defined as follows: a
map of cities is given as well as the distances between each
pair of cities. The problem statement is what is the shortest
possible route that visits each city exactly once and returns
to the origin city? Given k as the number of cities to be vis-
ited, the total number of possible routes covering all cities
is given as (k-1)!/2.

TSP is an intensively studied problem, and it has many
applications, like: drilling of printed circuit boards
(Grötschel, Jünger, & Reinelt, 1991); overhauling gas tur-
bine engines (Plante, Lowe, & Chandrasekaran, 1987);
computer wiring (Lenstra & Kan, 1974). The elaboration



Table 1
The obtained ExprimReference values.

51.41 49.79 54.76 52.41 49.37
49.65 50.8 53.27 55.75 53
51.91 49.23 53.43 51.53 54.64
53.13 52.82 50.06 52.89 52.59
54.7 52.43 55.59 52.66 51.57
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of more efficient solving is open, based on the fact that it is
an NP-hard problem.

In the case study, we considered swarm systems com-
posed of very simple cooperating mobile agents that mimic
the operation of a natural ant colony. The agents commu-
nicate via signals. It is similar to the communication of nat-
ural ants by pheromones. A communicated signal is not
directed to a specific agent. All the agents that reach the
signal will take it into consideration in the decision related
to the next place that they will visit. Even if the cooperation
is based on a simple rule, it makes the swarm system robust
and also scalable.

We made experimentations for different swarm systems:
Elitist Ant System, Ranked Ant System, Best-Worst Ant
System, Min–Max Ant System and Ant Colony System.
Finally, for the case study, we chose the swarm system that
operated as an Elitist Ant System (Dorigo et al., 1996). The
operation of an Elitist Ant System in the Section 3.3 is pre-
sented. Swarm system that operates as Elitist Ant Systems

has a wide range of applications like the: Post-Enrolment
Course Timetabling Problem (Jaradat & Ayob, 2010) and
TSP solving (Martinovic & Bajer, 2012). The swarm sys-
tem’s intelligence is analyzed for the solving of TSP with
40 nodes (dim = 40, represents the problem’s dimensional-
ity) in a graph. For the determination of RefIntellig, we
considered a swarm system that operated as an Ant System

(Colorni, Dorigo, & Maniezzo, 1991; Dorigo, 1992) in
solving the TSP. The basic idea of an Ant System is pre-
sented in Section 3.1. We took this decision based on the
fact that swarm systems that operate as Ant System are
the most frequent. They represented the inspiration of
many other swarm systems design.

3.1. A swarm system that operates as an ant system

considered

Marco Dorigo proposed first in 1992 in his Ph.D. thesis
(Colorni et al., 1991; Dorigo, 1992), the bio-inspired
problem-solving inspired from the natural ants, by mimick-
ing how they search for food. In the following, we briefly
explain the idea of a swarm system that operates as an
Ant System. Initially, each agent is placed on some chosen
city (node of the graph). An agent agentk currently at nod
(city) cityi chooses to move to city cityj by applying the fol-
lowing probabilistic transition rule:

pkijðtÞ ¼
½sijðtÞ�a ½gij �bP

l2Jk ðiÞ
½silðtÞ�a ½gil �b

if j 2 JkðiÞ
0 otherwise

8<
: ð3Þ

In formula (3) the following notations are used: Jk(i) is a
set of cities that can be visited when the agent is at cityi; gij
associated to the edge (i,j), represents the heuristic visibility
of edge (i, j), many times gij = 1/dij; dij represents the dis-
tance between city cityi and city cityj; a � 0 is an adjustable
parameter that controls the relative weights of the phero-
mone trail; b � 0 is an adjustable parameter of the heuristic
visibility. When a = 0, the closed vertex is more likely to be
selected. When b = 0, only pheromone amplification is at
work: this will lead the system to a stagnation situation
(all the agents generate a sub-optimal tour). Based on these
aspects a trade-off between edge length and pheromone
intensity should be realized.

In the case of an Ant System the pheromone amount on
each path will be adjusted according to formulas (4). This
adjustment is realized after each agent completes its tour.

sijðt þ 1Þ ¼ ð1� qÞsijðtÞ þ DsijðtÞ

DsijðtÞ ¼
Xm
k¼1

DskijðtÞ

DskijðtÞ ¼
Q=Kk; ifði; jÞ 2 tour done by agent k

0 otherwise

� ð4Þ

In formulas (4) the following notations were used: Q is
an arbitrary constant (many times its value should be set
to 1); Lk is the length of the tour performed by the agentk;
1�q represents the pheromone decay parameter, where
0 < q < 1, it represents the trail evaporation when the agent
chooses a city and decides to move; m represents the num-
ber of agents.

3.2. Establishment of the reference intelligence value for the

case study

As a first step, we established the reference intelligence
value denoted RefIntellig using the Reference Intelligence

Indicator Establishment algorithm. In the quality of human
evaluator, we considered as the intelligence indicator the
best to date obtained solution that is obtained at the end
of a problem’s solving by the swarm.

The intelligence evaluations for establishing RefIntellig
were realized. The parameters settings of the swarm opera-
tion, established empirically, were: M = 25 experimental
simulations; generated epoch = 1000; cities extent = 9.8;
a = 1; b = 1; evaporation = 0.1; 40 cities considered; swarm
system formed by 10 agents. Table 1 presents the results of
the M intelligence evaluations. The cities were placed ran-
domly on the map at each problem-solving intelligence
measuring. The distance between cities was considered as
the Euclidian distance, based on the cities placement on
the map.

Table 2 present the results of the statistical characteriza-
tion realized based on the ExprimReference data. The
obtained CV value, CV � 3.59, CV < 10, indicates that
ExprimReference is homogeneous. Implicitly an outliers
detection test will not be applied (a hybrid decision is not
necessary).



Table 2
Results of the statistical characterization realized
on the ExprimReference data.

Mean 52.3756
Standard error 0.3759
Median 52.59
Standard deviation 1.88
Variance 3.533284
Kurtosis �0.65888
Skewness �0.01424
Range 6.52
Minimum/maximum 49.23/55.75
CL/[LowerCI, UpperCI] 95%[51.6, 53.152]
CV 3.58889

Table 3
Results of the Kolmogorov-Smirnov test for
ExprimReference data.

KS 0.1073
P-value �0.1
Passed normality test Yes
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Table 3 present the results of the One Sample Kol-
mogorov–Smirnov Goodness-of-Fit test for the verification
of ExprimReference data normality. We considered the
application of the test with the significance level a_kolmog,
a_kolmog = 0.05. As a test result, the P-value � 0.1 and KS

(Kolmogorov–Smirnov distance) = 0.1073 were obtained.
The obtained result, P-value > a_kolmog indicates that
the data normality passed. Based on this fact, RefIntellig
(the CIM) is calculated as the mean of ExprimReference

data, resulting in RefIntellig = 52.3756.

3.3. The considered swarm system based on the idea of elitist

ant system

In Section 3.1, swarm systems that operate as Ant Sys-
tems were presented. The solution construction and evapo-
ration are defined by the formulas (4). In case of an Elitist
Ant Algorithm (Dorigo et al., 1996), the pheromone
update is modified as follows (5): at each iteration, the best
to date agent deposits an additional quantity of pheromone
on paths it traveled:

sij ¼ sij þ
Xm
k¼1

Dskij þ e � Dsbsij ð5Þ

where: e should be specified at the beginning of algorithm
running (it is a parameter of the algorithm); Tbs is the best
to date round trip; sij

bs = Q/Lbs if the path ij is from Tbs. In
some studies, it is indicated that e should take a value
Table 4
The obtained SampleInteligence data for the studied Elitist ant system.

52.05 51.76 57.63 51.27 51.62 52.57
54.57 49.68 49.46 56.72 48.62 51.82
55.57 51.92 52.17 51.52 56.43 49.75
59.38* 48.91 51.47 57.27 45.57 51.75
between 4 and 6. The elitist agent keeps depositing an addi-
tional pheromone on the same paths until the best to date
solution is changed.

3.4. Measuring the intelligence of the studied swarm system

For the intelligence measuring using the proposed met-
ric, we considered a swarm system that operated as an Eli-

tist Ant System in solving the TSP. For the determination
of the SampleInteligence sample size, we performed the
computation mentioned in Section 2.1, based on the fol-
lowing values: Tails = 2; Effect Size(d) = 0.413;
a_metr = 0.05; b_metr = 0.2, TP(TP = 1�b_metr)=0.8.
The calculus results were: N (Total sample size) = 48,
Df = N�1 = 47, Critical t � 2.0117, Noncentrality parame-

ter d = 2.8613.
For obtaining the SampleInteligence data set, we realized

intelligence measurements, with results presented in Table 4.
The parameters of the evaluated Elitist Ant System where: a
map formed by 40 cities; generated epoch = 1000; cities

extent = 9.8; a (of the swarm system algorithm see Section

4.1) = 1; b (of the swarm system algorithm see Section 4.1)
= 1; evaporation = 0.1; N = 48-experimental simulations.
Fig. 1 represents the intelligence variability graphically.

Table 5 presents the results of the statistical characteri-
zation performed on SampleInteligence data. The obtained
CV value, CV � 6.36, CV < 10 indicates that the data is
homogeneous. This having as meaning, the hybrid decision
is not necessary. Implicitly an outliers’ detection test will
not be applied.

We chose to apply more normality tests (more and less
powerful tests). Based on the fact that even the most pow-
erful Shapiro–Wilk test was used, we chose as the signifi-
cance level a_norm = 0.045. Table 6 presents the results
of the normality test by using: the One Sample Kol-
mogorov–Smirnov Goodness of Fit Test of Normality
(Chakravarti et al., 1967; Lilliefors, 1967, 1969); Lilliefors
– based on the Kolmogorov–Smirnov test (Dallal &
Wilkinson 1986; Lilliefors, 1967, 1969) and the Shapiro–
Wilk test (Shapiro & Wilk, 1965). All of the tests results
indicate that the intelligence indicator’s data is normally
distributed.

Based on the fact that the normality test passed, and the
CV indicates homogeneous data, it can be deduced accord-
ing to the MetrIntMeas algorithm that CIM should be cal-
culated as the mean of SampleInteligence, resulting in
CIM = 51.83813, with: LowerCI = 50.881 and
UpperCI = 52.796. CL = 95.0% was considered as the con-
fidence level.
50.25 51.82 54.31 52.88 49.58 44.82
51.98 51.87 46.28 48.26 47.62 54.53
53.76 51.74 55.2 48.83 55.08 49.99
57.51 51.81 52.19 53.32 49.54 45.58
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Fig. 1. Graphical representation of the intelligence variability.

Table 5
Statistical characterization of the SampleInteligence

data.

Mean 51.83813
Standard error 0.4756
Median 51.815
Mode 51.82
Standard deviation 3.295
Sample variance 10.85518
Kurtosis �0.07847
Skewness 0.054674
Range 14.56
Minimum/maximum 44.82/59.38
CL/[LowerCI, UpperCI] 95%/[50.881, 52.796]
CV 6.355785
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For the statistical comparison of the sample Sam-

pleInteligence with the RefIntellig, the parametric One Sam-
ple T-test was applied. See Step 6 of the Metric for the

Intelligence Measuring algorithm, for the decision of choos-
ing of the right statistic test. The test with two tails, Df

(degrees of freedom) = 47, was applied. The obtained test
results were the: P-value = 0.2641 and Critical T = 1.130.
Based on the fact that the P-value > a_metr, it can be con-
cluded that H0I can be accepted. There is no statistical dif-
ference between the intelligence of the Elitist Ant System
and RefIntellig. Based on this fact, the studied swarm sys-
tem (Elitist Ant System) could be considered belonging
from the intelligence point of view to the class of all swarm
systems whose intelligence is equal to the reference intelli-
gence value RefIntellig.

In order to answer the research question ‘‘if OIVs were
obtained”, we applied the Grubbs test on the Sam-
Table 6
Results of the normality tests for the SampleInteligence data.

One sample Kolmogorov-
Smirnov test

Statistic 0.1241
P-value (of the normality test) 0.0618
Normality test passed P-value > a_norm/”Yes”
pleInteligence data. It identified a single ‘‘suspicious” intel-
ligence indicator value (marked in Table 4 with *). A
‘‘suspicious” intelligence value is different from the others
but it cannot be considered as an OIV.

4. Application of the MetrIntMeas for measuring an

intelligent swarm system’s evolution

In this section, we present the applicability of MetrInt-

Meas metric for measuring an intelligent swarm system’s
evolution from the intelligence point of view. We give a
definition to the intelligent evolving systems.

4.1. Evolving systems

The embodied systems are able to sense the environment
using sensors and execute actions in the environment using
effectors. There is no unanimous definition in the scientific
literature of the ES (Evolving systems). Generally, the
evolving systems are considered as those embodied systems
that operate in a dynamically changing complex environ-
ment. Evolving systems many times evolve gradually based
on methods like: autonomous learning, inheritance, self-
adaptation, or changing of the structure. There are differ-
ent types of evolving systems described in the scientific lit-
erature (Blazic et al., 2014; Liang et al., 2015; Lughofer
et al., 2015). There are almost inexistent developed metrics
that are able to make an accurate measure of evolution. We
consider that such metrics are mandatory because they can
realistically verify/prove if/that a system has evolved.

Evolutionary Computation (Holland, 1975; Koza, 1992;
Yao, 1999) has applications for various problem-solving
Kolmogorov-Smirnov test with
Lilliefors significance correction

Shapiro-Wilk test

0.124 0.977
0.062 0.460
P-value > a_norm/”Yes” P-value > a_norm/”Yes”
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like: semantic aware evolutionary search (Kattan & Ong,
2015); maximum lifetime routing and energy efficiency in
sensor mesh networks (Rahat, Everson, & Fieldsend,
2015); multimodal optimization (Stoean, Preuss, Stoean,
& Dumitrescu, 2010); optimization based on the Endocrine
Control Evolutionary Algorithm (Rotar, 2014); classifica-
tion based on cooperative co-evolution (Stoean & Stoean,
2009); Stoean, Preuss, Stoean, El-Darzi, and Dumitrescu
(2009) propose an evolutionary techniques as an alternative
to machine learning based on Support Vector Machine; the
evolutionary reorganization of multiagent systems struc-
ture (Iantovics, & Zamfirescu, 2013).

Some evolving systems used different ways of evolution-
ary algorithms in order to evolve. Iantovics and Zamfirescu
(2013) presented an intelligent evolving multiagent system
called ERMS (Extended Centralized Multiagent System

with Cooperative Evolutionary Reorganization Capacity).
ERMS used an evolutionary learning algorithm that allows
the learning of some rules for the system’s reorganization.
The learned rules are retained in a rule-base. Using the
learned rules, the system is able to intelligently reorganize
its structure based on the pattern that respects the prob-
lems received for solving.

4.2. Measuring an intelligent system’s evolution

We consider that the intelligence is not a mandatory
property of an evolving system. Henceforth, we define the
intelligent evolving systems as follows.

Definition of an intelligent evolving system
We call an intelligent evolving system an embodied intel-

ligent artificial system able to make one or more evolutionary

steps during its life cycle. We call evolutionary step a mea-

surable increase in the computational intelligence in difficult

problem-solving. It should be measured by using the MetrInt-

Meas accurate and robust metric. MetrIntMeas must indi-

cate a statistically significant difference (increase) between

the measured intelligence before making the evolutionary
step and after it was made.

We chosen the specific intelligent swarm systems used as
case study presented in Section 3, by taking into consider-
ation the study of the evolution in intelligence. Initially
considered swarm system, operated as an Ant System and
the modification in the agents’ behavior having as the effect
the operation as an Elitist Ant System. This can be even the
result of simple rote learning, in that the rule, which defines
the behavior of the agents, is simply copied from another
swarm without using any sophisticated learning technique.
The reference intelligence indicator RefIntellig was calcu-
lated for the Ant System. After then, by applying the
MetrIntMeas metric, it was measured if the Elitist Ant Sys-
tem intelligence is equal or different from RefIntellig. The
obtained result was that there is no difference in intelli-
gence. Based on this result, it can be concluded that the
swarm system has not evolved. It does not pass an evolu-
tionary step in intelligence.
5. Discussions

We observed that in many intelligent swarm systems
(Mamei et al., 2003; Stradner et al., 2013), cooperative mul-
tiagent systems generally (Johnson et al., 2013; Iantovics
and Zamfirescu, 2013; Brady et al., 2014), an agent could
not detain a high intelligence by itself for a very efficient
operation and problem-solving. Each of the constituting
agents should have the capacity to communicate and coop-
erate with other agents. An agent could communicate
information/data that could help one or more other agents
in increasing their efficiency in operation. An efficient and
flexible cooperation could have as result a more efficient
problem-solving. A conclusion of our researches and some
other researches described in the scientific literature
(Mamei et al., 2003; Iantovics and Zamfirescu, 2013;
Stradner et al., 2013) consists in the fact, that even if the
individual agent’s intelligence is very limited, an increased
global intelligence at the system’s level emerges in the
swarm system. The intelligence emergence of the swarm
is the result of the efficient and flexible cooperation during
the problem-solving. It can be considered that there is some
kind of cognition at the swarm level. Langley, Laird, and
Rogers (2009) examine the main motivations for research
on cognitive architectures. Some cognitive systems archi-
tecture described in the scientific literature were reviewed.

The intelligence of a swarm is not the sum of the intelli-
gence of the agents’ members. Our proposed MetrIntMeas

(Metric for the Intelligence Measuring)metric purpose is to
measure this intelligence at the level of the swarm (to mea-
sure the swarm intelligence). In our approach, we consid-
ered the computational intelligence of the swarm system
in difficult problem-solving.

MetrIntMeas allows the classification of the swarm sys-
tems based on their intelligence. The metric is useful for
choosing/opting between swarm systems based on their
problem-solving intelligence. Based on an established refer-
ence intelligence indicator value, the design of a swarm sys-
tem could be requested that has that reference intelligence
level or it is more intelligent.

The metric analyzes the intelligence indicator data and
based on this it applies the most appropriate statistical
tests. It treats aspects like the intelligence variability and
OIVs (outlier intelligence values). As utility, it must be
mentioned that it could be used to detect very high or very
low OIVs. This could be important in order to identify
problems for whose solving the swarm manifest statistically
very low or statistically very high intelligence. The highest
intelligence value does not necessary means that it is an
OIV. The lowest intelligence value does not necessary
means that it is a low OIV.

The accuracy of the metric is based on the fact that the
measuring is statistically grounded. In the case study, by
making some intelligence evaluations, intelligence indica-
tors are obtained. Based on these values the CIM (central
intelligence indicator) is calculated. CIM is the calculated
intelligence quotient of the swarm. CIM indicates the cen-
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tral intelligence tendency of the swarm system. Repeating
the intelligence measurements on another set of problems
slightly different intelligence indicator values will be
obtained. Very probably the newly calculated CIM will
have a slightly different value from the previous one. But,
the result of the metric related with the swarm systems
intelligence measuring will be the same. The robustness
consists in the fact that the sample intelligence indicator
data should not be necessarily normally distributed. It
could contain outlier values, missing values and even could
admit some erroneous indicator values (if they are very dif-
ferent, they could be detected by the outliers’ detection test,
if they are not very different from the other values, they
does not influence the conclusions).

MetrIntMeas is appropriate for swarm systems, where
an intelligence indicator can be expressed as a single value.
Section 2.3 treats the case of swarm systems, where this
indicator can be calculated as a weighted sum of some ele-
mentary (could be or not atomic) intelligence evaluation
components identified by the human evaluator.

We gave a new definition to the intelligent evolving sys-
tems. Intelligent evolving systems are intelligent system
able to make one or more evolutionary steps during their
life cycle. A realized evolutionary step consists in a measur-
able increase in intelligence by using our proposedMetrInt-

Meas metric. In our definition, it does not count how
evolution is realized. It could be the result of an autono-
mous learning, for example, that is the most usual case.
Our definition refers to any intelligent system able to
evolve, a subclass of intelligent evolving systems being
the intelligent evolving swarm systems.

Evolution measuring has practical utility. In the case of
an implemented intelligent system, it can be verified if it
evolved in intelligence. For example, we consider a scenario
of an intelligent agent able to learn. The agent is endowed
with the capacity to learn autonomously during its life
cycle. The agent’s builder is unable to determine the effect
of the learning at the moment of the agent creation. During
the agents’ life cycle it could be verified if it has evolved in
intelligence, as the result of the autonomous learning.

6. Conclusions

There are many designed swarm systems (software,
robotic and hybrid software-robotic), but the effective
intelligence measuring of these systems is still an open
research direction. In this paper, we proposed a novel accu-
rate and robust metric called MetrIntMeas (Metric for the

Intelligence Measuring) for measuring a swarm system’s
intelligence in solving difficult problems. The type of mea-
sured intelligence must be defined by the human evaluator
who would like to obtain the intelligence quotient of the
swarm. The starting idea of the metric consists in the fact
that the intelligence measuring of a swarm system should
be based on some problem-solving intelligence evaluations.
These measurements result in obtaining a set of intelligence
indicators. Based on these intelligence indicators by using
the metric, the intelligence level/quotient of the studied
swarm system is established. The metric allows the classifi-
cation of the swarm systems based on their intelligence.
For proving the effectiveness of the metric, we realized a
case study for a swarm system specialized in solving an
NP-hard problem (TSP-Traveling Salesman Problem).

We had given a new definition to intelligent evolving
systems. As an application of the MetrIntMeas metric,
we realized a case study for the metric appropriateness
for the verification of whether an intelligent swarm system
made an evolutionary step. Based on the obtained results,
it can be concluded that the studied swarm system has
not evolved from the intelligence point of view.

An important property of the metric that should be
mentioned consists in its universality. In our approach,
we treated the metric application for cooperative swarm
systems (composed of software or robotic agents; could
be even hybrid systems) intelligence measuring. But, it
could be applied to intelligent systems that operate in iso-
lation (to measure the problem-solving intelligence of an
agent for example). There is no restriction for the applica-
tion of the metric to intelligent systems that solve a specific
class(es) of problem(s). Based on a comprehensive study of
the scientific literature, we consider that our proposed met-
ric is original and will represent the basis for intelligence
quotient/level measuring and measure the evolution of
agent-based systems in many future researches.
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1. Introduction 

Group Decision Support System (GDSS) is 
an interactive computer-based environment 
that supports concerted and coordinated team 
effort towards completion of joint tasks [1]. 
This collaborative environment is made up 
from a collection of highly configurable tools 
(i.e., brainstorming, voting and ranking, 
multi-criteria analysis, action planning, 
agenda setting etc.) which require a high 
level of expertise for an effective use to 
support complex decisions [2]. The strong 
relationship between the GDP outcome and 
the presence of a skilful facilitator to properly 
configure the available tools is thoroughly 
presented in many field studies of GDSS 
research [3]. Nevertheless, the presence of a 
scarce resource, such as a skilful facilitator, 
rapidly becomes the most demanding 
challenge in the wide spread of GDSS 
technology in organizations. To reduce the 
dependence on the facilitator, the participant-
driven GDSS was proposed as a promising 
direction to leverage the skills and abilities of 
each group member [4]. However, this 
approach is highly constrained by the 
cognitive complexity associated with the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

construction, coordination and execution of 
GDP by inexperienced users. 

To overcome the problem of cognitive 
complexity Briggs and de Vreede [5] have 
introduced the thinkLet (TL) concept, defined 
as a discrete decomposition unit that integrates 
a specific software tool, its configuration and a 
script specifying the proper usage of the tool. 
Consequently a TL may be considered a 
predefined interaction protocol among the 
GDSS’s users, an interaction mediated and 
structured by a tool from the GDSS software 
package. As a result, the GDP is structured as 
a flow of discrete interactions, each of them 
being reflected in the specific TL that 
codifies the essential knowledge to execute 
collaborative processes.  

The paper investigates the complexity 
associated with the GDP design in relation 
with some basic contextual factors such us 
the problem complexity, the users’ creativity 
and the problem space complexity. The 
remaining part of the paper is organized as it 
follows. The next section describes the main 
components of an envisioned collaborative 
software tool that act as a collaborative 
working environment for the GDP design. 
These components are implemented and 
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tested in a socio-simulation experiment 
described in Section 3. As in many field 
studies of GDSS research, the experimental 
results show clear self-organizing capabilities 
as regards the longitudinal use of the 
collaborative environment to design the GDP, 
but simultaneously a high dependability of 
performance on the contextual factor. From 
the engineering standpoint of constructing 
purposeful facilitation tools for e-meetings, 
these results are discussed and concluded in 
the last section. 

2. The Simulation Model the 
GDP design 

The socio-simulation model is developed 
from the perspective of envisioning a 
collaborative software tool that is used by the 
GDSS’s users to co-design the GDP. From 
this standpoint, the tool acts as a stigmergic 
environment that integrates and coordinates, 
on a social-scale, the facilitation knowledge 
of the GDSS’s users.  Conceptually this 
perspective is similar with the way in which, 
for instance, a collaborative CAD software is 
used to coordinates and integrates the specific 
engineering knowledge in the field 
architectural design [6]. Consequently, the 
socio-simulation basically mimics the users’ 
conceptual ‘navigation’ over the semantic 
structure of the problem space composed of 
TLs. It implies the design of a population of 
agents and a shared environment where the 
agents are localized and moved over it. For 
the collaborative modelling of GDP the 
stigmergic environment is the software tool 
which support the manipulation of the 
conceptual problem space that comprise all 
the TLs discovered and documented by the 
users community (so far there are over 70 
TLs acknowledged in literature [7]), while 
the agents are the users responsible to define, 
execute and evaluate the GDP (a path through 
the conceptual space of the available TLs). 

 

The semantic environment for the 
GDP design 

According to Parunak [8], a stigmergic 
environment assumes the definition of three 
main components: 1) the topology, 2) the 
states, and 3) the process. Structurally, the 
topology is usually represented as a fully 
connected weighted graph that codifies the 
facilitation knowledge of group decision 
(Figure 1). This knowledge presumes 
correlated information among the users and 
the TLs, reflecting the users’ evaluation of 
the TL’s performance (a node in the graph) 
relative to a problem type. The performances 
are stored for each “problem type” in a 
variable associated with each edge of the 
graph. The “problem type” is simply codified 
through a unique ID to distinguish among 
different performances when they are read, 
during the modelling phase of the GDP, or 
modified, after the GDP has been executed 
and evaluated by the agents. Evaluation of a 
GDP model entails a subjective assessment of 
the model, after its execution, against some 
performance criteria that quantifies the 
efficiency, effectiveness and satisfaction with 
the GDP. Note that for the rationale of our 
simulation the composite criteria to quantify 
the TL’s performance are irrelevant, it just 
serves as a unified denominator to measure 
the GDP outcome. 

The performances from all the graph’s edges 
describe the state of the environment over 
time. Usually, the environment executes a set 
of processes on the variables (as aggregation 
end evaporation in the case of ants [8]). For 
the purpose of our simulation, we apply a 
simple additive rule to simulate the 
aggregation of performances. After the 
evaluation of a GDP model that corresponds to 
a certain problem type, a path through a 
number of n nodes TL1,…,TLn, the aggregation 
rule may takes the following form: 

Pj,k(TLk,t) = Pj,k(TLk,t-1) + Pj,k(TLk)/λ (1) 

 

 

 

 

 

 
 

Figure 1. The simplified topology for the conceptual environment represented in UML.  
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where t represents the temporal component of 
the model which is incremented by one for 
each successive use of the GDSS - it 
practically corresponds to a simulation tick; k 
is the TL’s identification index from the set 
of TLs used to model the GDP; Pj,k(TLk) – is 
the performance of the k-th TL evaluated 
from the side of TL j; Pj,k(TLk,t) and 
Pj,k(TLk,t-1) are the new and previous values 
of the performances stored on the edge 
between the TLs j and k; and λ is a tuning 
parameter, arbitrary chosen, to weight the 
impact of the last evaluation. 

The agents’ behaviour over the 
semantic environment 

The agents are users who interact with the 
collaborative tool to design a GDP. 
Conceptually, at any time an agent is 
“located” in a node (TL) of the conceptual 
problem space, performing one of the 
following basic actions:  

- evaluating the preference for the next 
possible TL (or TLs) that are going to be 
executed given the current context of the 
GDP implementation;  

- selecting the next best TL (or a group    
of TLs) for further completing the     
GDP model;  

- executing the TL (or the group of TLs) 
from the model, and finally;  

- assessing the performance for the 
executed TLs.  

The assessment activity is simulated using 
the formula (1), while the first three actions 
with Luce’s selection axiom [9]: 





m

i

TTLPTTLP
jk

ijikjk eep
1

/)(/)( /  (2) 

where pjk represents the preference for an 
alternative TL, i.e. the selection probability of 
the TL k from the TL j; i is the index of TLs 
connected from the side of node j (in fact all 
the m TLs available in the problem space as 
long the graph is fully connected); and T is a 
positive subunitary parameter used to define 
the deviation from a pure rational behaviour 
(for T = 1 we have a random selection 
behaviour, while for T = 0 a deterministic one). 

The above formula is the most common 
model of stochastic decisions due to its 

correlation with the psycho-social 
observations of human behaviour in several 
domains. As a result of normalization, the 
preferences for the unexploited TLs are 
diminishing after each performance update. 
This mechanism replicates the pheromone 
evaporation process of the real ants (e.g. even 
if a TL has been positively evaluated after an 
execution of a GDP model, the associated 
preference will decrease once a better 
alternative is discovered and more frequently 
used). Under complex circumstances when 
TL’s selection depends on other users, or the 
performances available on the edges are 
uncertain or incomplete, or there is 
impossible to evaluate the performance of a 
TL due to any real constraint (i.e. temporal, 
cognitive, economic, etc.), we consider the 
user who models the GDP to have limited 
cognitive capacity (bounded rationality). 
Note that Luce’s selection axiom does not 
specify the reasons for the “bounded 
rationality”; instead, it tries to generalize the 
selection behaviour of human decision-
makers through the parameter T which may 
be interpreted as the evaluation costs or 
uncertainty associated with the quantification 
of TLs’ performance (on one side, when T=0, 
there is no uncertainty associated with the TL 
selection, while on the other side, when T=1, 
there is a completely random selection). 

3. Experimental Results 

To evaluate the cognitive complexity for 
modelling the GDP we conducted a virtual 
experiment implemented in the NetLogo multi-
agent simulation environment [10] (Figure 2). 
Note that the NetLogo implementation includes 
some additional variables which are beyond the 
scope of this paper. 

The experiment presumes that users are 
facilitating the e-meeting by trying to co-
define, from a metacognitive stance, the GDP 
model for a problem type. Defining the GDP 
model implies the conceptual navigation in 
the problem space in order to find the best 
sequence of TLs that maximise the model’s 
performance. The model’s performance is 
simply computed by averaging the “Initial 
Utility” values for the TLs that are 
composing the GDP. These values are 
randomly chosen and assigned when the 
simulation is initialized. 
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The section presents the normalized entropy 
for 100 successive explorations (iterations) in 
relation with three factors that potentially 
could impact over the GDP models’ 
performance:  

- problem complexity (PC) – defined as the 
number of distinct TLs that compose a 
GDP model;  

- social temperature (T) – which stands for 
the T parameter as defined in Eq(2); and  

- complexity of the problem space (PS) – 
defined as the total number of TLs that 
compose the GDP modelling problem space.  

An exploration stands for a complete 
execution cycle of a GDP. It includes three 
consecutive phases: 1) finding a suitable 
model through the successive selection (using 
the Eq(2)) of TLs that compose the GDP 
model for a given problem type; 2) executing 
the identified model and assessing its 
performance by reading and averaging the 
predefined performance values of all the TLs 
that compose the GDP model; 3) assessing 
the model by updating the performances 
values (using the Eq(1)).  

The statistics are aggregated from 30 
experiments for a relatively simple set of 
experimental values for the observed parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The auto-organization of relations between 
TLs (i.e. the performance update after 
successive evaluations) entails a decrease of 
freedom due to the emergence of contextual 
constraints that reduce, in time, the 
probability to select some TLs (i.e. the 
preference for the available TL as defined in 
Eq(2)). For a problem type, the degree of 
freedom corresponds to the probabilistic 
distribution of preferences for the available 
alternatives that is equivalent with the 
Shannon normalized entropy [11][12]. The 
Shannon normalized entropy for the selection 
of a TL is given by: 





m

k
kjkjkj mpppE

1
,,, )ln(/)ln()(  (3) 

where pjk - represents the preference, the 
selection probability of the TL k from the TL 
j; i – is the index for the TLs connected from 
the node j (in fact, all the m TLs available in 
the problem space).  

When the recorded performances are equal 
for all the available modelling alternatives, 
the user is considering the entire problem 
space when he selects a feasible TL (the 
probabilities from the Eq(2) being equally 
distributed entail an entropy equal with 1). 
Contrary, when the recorded performances 

 

Figure 2. The interface of the NetLogo simulation environment for the implemented experiment. 



 

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 267

favour a single alternative, the user will have 
no freedom in the selection of the best TL (all 
the probabilities from formula (2) being 0 
excepting the best alternative that is 1, entails 
an entropy equal with 0). Thus, the entropy 
associated with TL’s selection is a measure of 
cognitive complexity for modelling the GDP. 
Moreover, it is a local metrics that can be 
computed for each TL’s selection activity for 
modelling the GDP. 

The impact of problem complexity 
experimental variable over the 
cognitive complexity of GDP design  

Figure 3 shows the cognitive complexity 
associated with the GDP modelling for 
different values of the PC experimental 
variable. The data is obtained for a problem 
space composed of 30 TLs and T=0.7. 
Since this measure is computed on the basis  

 

of the local data for each selection action 
(the performances available on the outward 
edges from the current TL), the figure 
corresponds to the average of entropies for 
all the TL selection actions needed to 
complete the GDP model (3, 5 and 7 
successive TLs, depending on the value 
assigned to the PC experimental variable).  

The data from the Figure 3 shows that 
problem complexity has a great impact over 
the entropy (around 190 iterations are 
required to decrease the entropy close to 0 for 
a PC=7, while less than 5 iterations are 
needed for a PC=3). These results prove that 
for complex problems there is an increasing 
need for experimentation, learning and 
creative use of the GDSS. At the same time, 
they contrast with the real use of GDSS in 

organizational settings where the complex 
problems are often less frequent and 
consequently there is not an adequate amount 
of opportunities to explore the GDSS 
functionalities. On the other hand, problem 
complexity concerns the users’ satisfaction in 
the GDP design as well. PC is recognized by 
many authors to often be a subjective factor 
that measures the availability of relevant 
information [13]. The more informed/ 
predictable the GDP design is (i.e. the 
individual entropy smaller) the smaller is the 
subjective users’ perception over the problem 
complexity. Consequently, the cognitive 
complexity for complex problems may be 
lessening by incorporating functionalities that 
provide relevant information that minimize 
the problem space for each discrete activity 
of GDP modelling. As for any design tool, 
these basic activities are the selection and 
elaboration of a model. 

 

 

 

 

 

 

 

 

 

 
The impact of social temperature 

experimental variable over the 
cognitive complexity of GDP design 

Figure 4 shows the cognitive complexity 
associated with the GDP design for 
different values of T. The data is obtained 
for a problem space and a PC composed of 
30 and 5 TLs respectively. The 
performances are better for higher values 
of T as a result of exhaustive exploration 
of the problem space. Consequently, when 
the design problem for a GDP is in the 
learning phase, it is preferably to 
encourage a creative use of the GDSS by 
neglecting the suggestions offered as a 
result of computing the collective 
preferences. Obviously, this issue 
presumes a high frequency of that problem  

 
Figure 3. The normalized entropy of the GDP design for different problem complexities. 
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type and a long-term use of the GDSS in 
organization to compensate the extra time 
required for experimentation purpose as 
depicted in Figure 5. Note that as long the 
T parameter measures the degree in which 
preferences are considered by the users 
during the GDP design, at the same time it 
may be used as a post factum measure to 
quantify the users’ creativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impact of problem space complexity 
experimental variable over the 
cognitive complexity of GDP design 

Figure 6 shows the cognitive complexity 
associated with the GDP modelling in a 
problem space with a different number of TLs. 
The data is obtained for a simple problem type 
composed of three TLs with T= 0.7. One can 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 6. The normalized entropy for the GDP design in a problem space of different dimensions. 

 

Figure 5. The transition maps of the GDP performance for different T values.  

 

Figure 4. The normalized entropy of the GDP design for different T values. 
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notice that the complexity of the problem 
space has basically no impact over the 
convergence of the entropy function. This is 
one of the core arguments for employing 
stigmergic coordination mechanisms for 
global optimization problems which remains 
scalable and effective in open, dynamic and 
uncertain environments. On the other hand, 
an increase of available TLs for modelling 
the GDP will automatically result in an 
increase of alternatives to model it. In the 
GDSS research field has been experimentally 
shown that, as the number of decision 
alternatives are growing, the decision makers 
are tempted to consider less of them [14]. 
This implies an accelerated discrimination of 
the possible alternatives through the 
intensification of the GDP model evaluation. 

4. Conclusions  

The work from this paper investigated some of 
the basic contextual factors (such us the 
problem complexity, the users’ creativity and 
the problem space complexity) that have a 
significant impact over the cognitive 
complexity associated with GDP design in e-
meetings. The investigation has been conducted 
by implementing and testing in a socio-
simulation experiment an envisioned 
collaborative software tool that acts as a 
stigmergic environment for modelling the GDP. 

The results extend the conclusions presented in 
[15][16], showing that the dominant factor  for 
the wide adoption of GDSS technology in real 
organizations still remains the problem 
complexity. It may be lessening by 
incorporating functionalities that provide 
relevant information for the GDP design (i.e. 
the knowledge resulted from the subjective 
evaluation of each GDP from a large 
community of users) that entails a greater need 
for experimentation, learning and creative use 
of the GDSS. Moreover, the performances are 
better for higher values of the social 
temperature as a result of exhaustive 
exploration of the problem space. Consequently 
it is preferably to encourage a creative use of 
the GDSS when the GDP modelling problem is 
in the learning phase. Conversely, the 
complexity of the problem space has basically 
no impact over the cognitive complexity 
associated with the GDP design. This shows 
why the emergent functionalities of a 

facilitation tool for the GDP design should be 
engineered around some simple stigmergic 
coordination mechanisms. 

REFERENCES 

1. DESANCTIS, G., B. GALLUPE, A 
Foundation for the Study of Group 
Decision Support Systems, Management 
Science, 1987, pp. 589-609.  

2. FILIP F. G., Decision Support and 
Control for Large-scale Complex 
Systems, Annual Reviews in Control, 
vol. 32(1), 2008, pp. 61-70. 

3. NIEDERMAN F., C. M. BEISE, P. M. 
BERANEK, Issues and Concerns about 
Computer-Supported Meetings: The 
Facilitator’s Perspective, MIS 
Quarterly, vol. 20(1), 1996, pp. 1-22. 

4. HELQUIST J. H., J. KRUSE, M. 
ADKINS, Developing Large Scale 
Participant-Driven Group Support 
Systems: An approach to Facilitating 
Large Groups, Proceedings of the First 
HICSS Symposium on Field and Case 
Studies of Collaboration, IEEE Computer 
Society Press, Los Alamitos, CA, 2006. 

5. BRIGGS R. O., G. J. DE VREEDE, J. F. 
NUNAMAKER JR., Collaboration 
Engineering with ThinkLets to Pursue 
Sustained Success with Group Support 
Systems, Journal of Management 
Information Systems, vol. 19(4), 2003, 
pp. 31-63. 

6. CHRISTENSEN L. R., The Logic of 
Practices of Stigmergy: 
Representational Artifacts in 
Architectural Design, Proceedings of 
the 2008 ACM Conference on Computer 
Supported Cooperative Work, ACM, 
New York, NY, 2008, pp. 559-568. 

7. DE VREEDE G. J., R. O. BRIGGS, G. L. 
KOLFSCHOTEN, ThinkLets: A 
Pattern Language for Facilitated and 
Practitioner-Guided Collaboration 
Processes, International Journal of 
Computer Applications in Technology, 
vol. 25, 2006, pp. 140-154. 

8. PARUNAK. H. V. D., A Survey of 
Environments and Mechanisms for 
Human-Human Stigmergy, Lecture 



 

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 270 

Notes on Artificial Intelligence, vol. 
3830, Springer, 2006, pp. 163-186. 

9. LUCE D., Individual Choice 
Behaviour, Wesley, New York, 1959. 

10. WILENSKY U., NetLogo, Center for 
Connected Learning and Computer-Based 
Modeling, Northwestern University, 
http://ccl.northwestern.edu/netlogo/, 1999. 

11. GUERIN S., D. KUNKLE D., 
Emergence of Constraint in Self-
Organizing Systems. Nonlinear 
Dynamics, Psychology, and Life 
Sciences, vol. 8(2), 2004, pp. 131–146. 

12. PARUNAK V. H. D., S. BRUECKNER, 
Entropy and Self-Organization in 
Multi-Agent Systems. Proceedings of 
the Fifth International Conference on 
Autonomous Agents, Montreal, Canada, 
2001, pp. 124–130. 

13. BYSTRÖM, K., K. JÄRVELIN, Task 
Complexity Affects Information 
Seeking and Use, Information 
Processing & Management, vol. 31, 
1995, pp. 191-213. 

14. POOLE M. S., J. ROTH, Decision 
Development in Small Groups IV: A 
Typology of Group Decision Paths, 
Human Communication Research, vol. 
15(3), 1989, pp. 323-356. 

15. C.B. ZAMFIRESCU, An Agent-
Oriented Approach for Supporting 
Self-Facilitation in Group Decisions, 
Studies in Informatics and Control, vol. 
12, 2003, pp. 137-148. 

16. ZAMFIRESCU, C.B., F.G. FILIP, 
Swarming Models for Facilitating 
Collaborative Decisions, International 
Journal of Computers, Communication 
and Control, vol. V, 2010, 
http://journal.univagora.ro/download/pdf/
397.pdf , pp. 125-137. 



Societal Intelligence – A New Perspective
for Highly Intelligent Systems
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Abstract. A novel concept of intelligence called “societal intelligence”
and its related architecture for solving complex problems are introduced.
The idea is based on what we consider on the “intelligence of human
society”. For illustrative purposes, a case study is realized, which involves
the solution of a difficult problem in a societal multi-agent system where
the agents operate in an unknown environment. In the simulated robotic
mobile multi-agent system, the agents adapt their movement control in
the environment based on some global knowledge constructed by the
system. Besides the proposed architecture, a novelty presented in the
paper is the demonstration that even in a simplified knowledge-based
multi-agent system, if the principles of societal intelligence are followed,
a powerful global intelligence emerges at the system’s level.

Keywords: Hybrid knowledge base · Collective intelligence · Neural
network · Learning · Cognitive multi-agent system · Complex system

1 Introduction

In this paper we present some novel concepts of intelligence as a property of
a knowledge-based multi-agent system (MAS) - that allow the solving of com-
plex problems. Specifically, we introduce a type of intelligence namely “societal
intelligence” inspired by the “emergent intelligence of the human society”. Fur-
thermore, based on this concept, we introduce a novel MAS architecture. The
overall concept of intelligence is supplemented by other related concepts encom-
passing different types of intelligence: “individual intelligence”, “individual influ-
enced intelligence”, “global intelligence base”, “emergent global intelligence” and
“environment intelligence”. We would like to note here that the term of societal
intelligence has already been used in some studies with other meanings.

The paper is organized as follows. Section 2 presents several considerations
related to the knowledge-based intelligent systems (KBIS); The newly proposed
societal intelligence and its architecture are described in Sect. 3; Sect. 4 shows
the realized case study, its results, and a statistical analysis. In the last section,
the conclusions of the research are outlined.
c© Springer International Publishing Switzerland 2015
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2 Intelligent Knowledge-Based Agents

One of the main purposes of most KBIS consists in attempting to obtain improve-
ments in problems solving while comparing it against a system that is perceived
not to have any intelligence, whatsoever. Increased intelligence is usually noted
by being more efficient, flexible and accurate solution of difficult problems (such
as the detection of clinically relevant inconsistencies [7], for example).

We would like to note here that an important aspect that should be treated,
during the development of intelligent systems is: an analysis of the necessary
intelligence. Sometimes, an increased intelligence can even have disadvantages.
For example, if we were to consider an extremely intelligent agent as one that uses
complex specializations for processing but it must solve very simple problems.

Some researches [9,10] focused on the study of decision making in the frame
of cooperative coalitions, which many times outperform the decisions of individ-
uals that operate in isolation. In many cooperative MAS, the intelligence could
be considered at the level of the whole system. The intelligence in these systems
is higher than the individual member agents intelligence. There are some devel-
oped systems composed of simple agents that as a whole could be considered
intelligent [4,8]. The literature has not defined effective metrics that could give
a quantitative evaluation to the collective intelligence.

Kun and Galis [5] present an intelligent mobile MAS composed from sim-
ple reactive agents (with knowledge retained as a set of rules) specialized in a
computer network administration. The MAS simulates the behavior of a human
network administrator, however, as a whole could be considered intelligent.

A novel self-adaptive MAS called ERMS that can solve problems using genetic
algorithms has been proposed in [4]. The self-adaptability of ERMS consists in
the capacity to autonomously reorganize its structure based on the pattern that
respects the problems transmitted for solving. The reorganizations of the system
are described in a rule base constructed using an evolutionary learning algorithm.
The results prove that some MAS successfully can use evolutionary algorithms in
order to discover emergent patterns of reorganization for efficient solving of the
undertaken problems. In case of a complex network of agents, this reorganizing
behavior could be associated with the intelligence.

3 A New Perspective for Highly Intelligent Multi-agent
Systems

We consider the complexity handling of current scientific realizations of the
human society and attaining the current stage of evolution, is the result of the
so called societal intelligence of the human society.

3.1 Characterization of the Intelligence of Human Society

Each human has its own intelligence which allows problems solving, like: spe-
cialty problems (e.g. medical diagnosis problems) using specialty knowledge
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(e.g. medical diagnosis knowledge) and solution of everyday life problems using
commonsense knowledge (e.g. how to keep a house clean).

A human is able to take decisions based on the: commonsense knowledge
(impossible to attain by computing systems [1]); specialty knowledge, attainable
by expert systems [2] and human intuition defined by the psychologist and psy-
chiatrist C. Jung. The intuition is very specific to humans and is almost totally
missing from even the systems perceived to be intelligent [3]. It allows decisions
taking in difficult situations, in the context of missing or erroneous information.

The following main concepts are defined for the human society and extended
to MAS in the next section.

Definition 1. The societal intelligence is the intelligence of society where there
is a requirement of solving a particular set of complex problems.

Definition 2. The individual intelligence defines the capacity of an individual
to solve different complex problems.

We consider the existence of distributed knowledge as the global intelligence
base of a society.

Definition 3. The global intelligence base of the society encompasses the entire
knowledge of a society used for problem-solving.

Definition 4. The influenced intelligence of individuals defines how they learn
from the global intelligence base and to learn from other individuals.

The influenced intelligence has an increasing effect to the individual intelli-
gence. A human have the possibility to contribute to the global intelligence of
the society by adding new knowledge and modifying existent knowledge. Based
on these reasons the knowledge of the society is changing continuously. However,
the intelligence of a human could influence the intelligence of other humans.

Definition 5. The environment intelligence is the potential of the environment
to give information to individuals in order to solve problems in a more intelligent
way (accurate, efficient and/or flexible).

Definition 6. The emergent global intelligence of the society is the intelligence
that emerges at the human society level.

The recent results in the scientific evolution of the society are usually obtained
by the collective effort of many individuals. They are based on collective intel-
ligence, expertise, effort of many humans using distributed resources for cre-
ation/development of very complex artifacts as space rockets, airplanes etc.

3.2 A Novel Societal Multi-agent System Architecture

In this section we introduce the general architecture of a societal MAS, denoted
with IMG = {IAg1, IAg2, . . . , IAgn} (see Fig. 1). The agents have the same
goal to solve more efficiently the problems at the level of the whole system.
They belong to the same society where each agent must undertake at least one
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Fig. 1. The proposed societal multi-agent system architecture

role. The roles of an agent define the contribution of the agent to the prob-
lems solving in the frame of the MAS. To be able to undertake a role, an
agent must have the necessary capacity (processing and memory) and capability
(problem-solving specializations). If an agent undertakes a role it must fulfill all
the commitments associated with that role (corresponding to the role it must be
able to fulfill different functionalities in the frame of society). We denote with
Roles = {rl1, rl2, . . . , rlm} the existent roles in IMG. The notions society, role,
commitment are already defined in [4].

Each agent have an “individual intelligence” (Definition 2) that defines its
intelligence in problems-solving and contribution to the fulfilling of different
functionalities of the MAS.

We denote with lik the individual intelligence of the IAgk agent, lik =
locint(IAgk). li = [li1, li2, . . . , lin] denotes the individual intelligence of all
agents from IMG.

The “global intelligence base” (Definition 3) consists in a specific collective
intelligence formed at the level of the MAS where the agents belong. It contains
some global data, information, knowledge and metaknowledge that govern the
IMG system coherent, efficient and flexible operation. The existent knowledge
in the global intelligence base may have different representations, like: rule base,
neural network, semantic net etc. or combinations of these. The content of the
global intelligence base is available to the agents, they must be able to read
and sometimes to write data onto it. Parts of the global intelligence base are
also detained by some of the agents from the system. There exists knowledge
detained by agents that is not included in the global intelligence base.

Each agent has an “influenced intelligence” (Definition 4) defining how to use
the environment intelligence, learning from other agents and from the global intel-
ligence base. Using the influenced intelligence an agent may be able to increase its
individual intelligence. Improvements given by the influenced intelligence may be
given by learning, adaptation and/or evolution. Using its influenced intelligence
an agent should be able to extend and sometimes modify the global intelligence
base and also increase the individual intelligence of other agents. We denote with
liik the influenced intelligence of the IAgk agent, liik = locinfint(IAgk). liik may
increase the individual intelligence lik of IAgk; lik = fincr(lik, liik, infp); fincr
describes how the old individual intelligence and the influenced intelligence emerge
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in a new individual intelligence; infp is data/information and/or knowledge used
for the new individual intelligence. The individual influenced intelligence of agents
is denoted by lii = [lii1, lii2, . . . , liin].

We mention a difficult medical case, the diagnosis of a patient with co-
morbidity when the necessity of the individual influenced intelligence is highly
motivated. The physician in order to elaborate a diagnostic needs the assistance
of an agent able to take decisions using its influenced intelligence by consult-
ing some cognitive agents. The “intelligence of the environment” (Definition 5)
sometimes chooses existent methods or combines more methods. An agent may
be able or not to use emergent information/data offered by the environment.

To illustrate the concept of environment intelligence is considered the exis-
tence of ordering information related to a large set of numbers. If it is known
that the numbers are ordered it can be applied the binary search method. The
minimal “intelligence” - called intelligence for illustrative purposes only-in the
environment (the information: the numbers are ordered), allows the improve-
ment of the problem solving if the problems solver agent is able to understand
it (understand: the numbers are ordered) and use this information (apply the
most appropriate detained search technique).

The emergent global intelligence (Definition 6) is the problem-solving intelli-
gence of the IMG system that emerges at the level of the whole system.

The societal intelligence in a societal MAS is defined by some specific rules
that govern the organization and intelligence of the society of agents. Estab-
lishes how the global intelligence base is constructed and used by the individuals
from the society. It defines the individuals personal intelligence and influenced
intelligence (how they learn from each others, from the environment and from
the global knowledge of the society). The application of the societal rules has as
effect the emergence of a global intelligence at the society level.

4 Case Study of a Simple Societal Multi-agent System

Many times the intelligence of a system is considered based on capabilities like
[4,6]: learning, self-adaptation and evolution. The existence of some of these
capabilities does not implicitly allow a quantitative evaluation of the intelligence,
they just prove its existence. We consider that the evaluation of a system’s
intelligence must be based on some metrics. Such metrics should be determined
based on considerations that include problems solving point of view, like: difficult
problems solving, capacity to treat different types of uncertainties etc.

Different studies related with robots are realized in [11]. We have imple-
mented a simplified societal MAS. Notions related with different types of intel-
ligence (and knowledge), like individual intelligence and individual influenced
intelligence are used with the significance of intelligence just for illustrative pur-
poses. We have simulated a two-dimensional virtual software environment where
operates an n-element robotic mobile MAS denoted SMG = {RA1 . . . , RAn}.
Each of the agents has the same role to search for the same specified
object. The agents using their effectors are able to move in the environment.
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Using their sensors they are able to explore the environment during their move-
ment and read-write information onto the global intelligence base. The environ-
ment map is not known to the agents. Each agent from the system uses the same
method denoted Eval for the objects evaluation: Eval : Ob → R + . An object
denoted Obk (Obk ∈ Ob; Ob denotes the objects’ space) based on the similarities
can be more or less appropriate with the value of the searched object. At each
problem-solving cycle, SMG must solve a single problem denoted Pr of finding
a specified object. SMG solve in a cooperative way the problem (find the object
or fail). The individual intelligence of an RAk agent consists in the followings:

– capacity to move in the environment;
– capacity to evaluate the objects in the environment;
– capacity to take into consideration the detained local history denoted Bestk =

(BestV alk;Positionk); BestV alk denotes the best value found until that time;
Positionk denotes the position of the best value;

– Local history constructed during a problems solving.

The global intelligence base denoted GIB is dynamically constructed step-by-
step by all the agents during a problem’s solving. GIB contains the follow-
ing data at each problem-solving cycle, Global = (GlobalV al;GlobalPosition):
GlobalV al denotes the highest value found; GlobalPosition denotes the global
position of the best value found at system’s level. The individual influenced intel-
ligence of an agent RAk consist in the capacity to take into consideration the
best solution detained at a moment of time in the global intelligence base. Each
agent RAi is able to modify GIB when it finds a better solution. Each agent
RAi may take into consideration in a certain degree the personal best previ-
ously found during its history PersBesti = (BestV ali;Positioni). Each agent
may take into consideration to a certain degree the best location that any agent
has ever found the global best GlobalBest = (GlobalV al;GlobalPosition).

Cooperative Problem Solving presents the main steps of the SMG system
operation at a problem’s solving cycle. A problem-solving cycle begins when
a problem is submitted to be solved and finishes when is obtained a solution
or the running time expires. Gen denotes the admitted maximal time steps.
It is not possible the theoretical determination of the necessary time, however,

Step 1.

@Creation of the environment and the distributed objects.

@Creation of the societal multi-agent system.

@Specification of the searched object.

Step 2.

while (Object not found) and (Gen not reached) do
@Cooperative search for the object in the environment

end
Step 3.

@Obtained solution is reported.

Algorithm 1: Cooperative problem solving algorithm
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Table 1. Results of 20 simulations

Table 1.1. apb = 5, agb = 5 Table 1.2. apb = 8, agb = 8

In 20 40 60 80 20 40 60 80

3 550.8 / 8 503.1 / 5 495.0 / 4 490.6 / 2 560.9 / 9 510.6 / 7 470.5 / 5 495.4 / 4

2 510.1 / 6 497.7 / 4 430.2 / 3 428.2 / 3 532.3 / 7 493.1 / 6 469.7 / 4 451.5 / 4

1 420.0 / 3 390.6 / 3 330.8 / 2 326.4 / 2 335.0 / 3 312.9 / 3 290.6 / 2 260.7 / 1

Table 2. Results of the two-factor ANOVA tests, α = 0.05

Table 2.1. Problem solving time Table 2.2. Number of missed solutions

Fc P-value Fr/Fcr Remark P-value Fr/Fcr Remark

1-R 5.14 ≈ 0.000036 87.64 Fr > Fcr ≈ 0.061 4.61 Fr < Fcr

2-R 5.14 ≈ 0.0000009 303.27 Fr > Fcr ≈ 0.00068 31.2 Fr > Fcr

1-C 4.76 ≈ 0.0023 17.43 Fc > Fcr ≈ 0.037 5.54 Fc > Fcr

2-C 4.76 ≈ 0.0018 19.09 Fc > Fcr ≈ 0.0053 12.55 Fc > Fcr

is empirically established as Gen = 600. In different implementations depends
on factors like the environment intelligence, the initial distribution of the agents
in the environment and values of different parameters of the algorithm.

The parameters values of the simulation were |SMG| ∈ [20, 80]; environment
intelligence (with significance “degree of unknown”) denoted ei, ei ∈ {1, 2, 3};
consideration of the personal best denoted apb, with apb ∈ [0, 10]; consider-
ation of global best denoted agb, with agb ∈ [0, 10]. Based on the simplified
environment we have defined three types of environment intelligence: ei = 3-
no intelligence (randomly generated and distributed objects); ei = 2-very small
intelligence; ei = 1-small intelligence.

Emergent global intelligence measured by the elaborated metric considers
two criteria, the average problem solving time of more simulations (until the
solution has been found) and the number of missed solutions in that simulations
(the solution is not obtained in the admitted time steps Gen). A result of 20 prob-
lem’s solving cycle of the same problem is denoted with Result = {Ind1; Ind2};
Ind1-shows the averaged number of time steps when the solution is obtained
during 20 simulations; Ind2- shows how many times the solution was missing
during 20 simulations. In = ei/|SMG|. Table 1 presents some simulation results.

In order to prove that the number of agents and the environment intelli-
gence influences the problem solving time, verification of statistical difference we
consider a two-factor analysis of variance ANOVA without replication by tak-
ing into consideration ei, |SMG| (independent) and the problem solving time
(dependent). It is also considered a two-factor analysis of variance ANOVA with-
out replication by taking into consideration ei, |SMG| (independent) and the
number of times when the solution have been missed (dependent).
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For both ANOVA analysis it is considered the significance level α = 0.05. The
results of the ANOVA tests in the Table 2 are presented (conclusions that can
be obtained are based on the details presented in the remark columns). Can be
concluded a decrease of problem solving time (statistical difference at α = 0.05)
based on the increase of environment intelligence and the number of agents. The
misses time (statistically analyzed at α = 0.05), is influenced by the number of
agents, the environment intelligence proved influence just in some conditions.

We have observed in our research that in a highly complex societal MAS
an agent could not detain by itself the maximal individual intelligence for the
most optimal operation and problem solving. The agent must have influenced
individual intelligence with learning capabilities, learning from other agents and
from the global intelligence base. In our case-study the use of information related
with the global best improves the problem solving time.

5 Conclusion

We have proposed a novel type of intelligence for difficult problems solving called
societal intelligence, inspired by the “intelligence of the human society”. For
proving the effectiveness of a societal MAS, we have realized a case study. The
main conclusion of the considered case study was that using the principles of
societal intelligence even if the intelligence of the considered agents is very lim-
ited, in the system emerges an increased global intelligence at the system’s level.
Based on a comprehensive study of the scientific literature we consider that
our proposal is original and will represent the basis for many future researches,
including elaboration of some metrics for the measurement of complex systems’
intelligence able to solve extremely difficult problems. In our approach, there
are considered different types of intelligence that can be measured and based on
them can be established the intelligence of a highly complex system as a whole.
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Abstract. Many real-life difficult problems imply more than one optimization
criterion and often require multiobjective optimization techniques. Among these
techniques, nature-inspired algorithms, for instance, evolutionary algorithms,
mimic various natural process and systems and succeed to perform appropriately
for hard optimization problems. Besides, in chemistry, osmosis is the natural
process of balancing the concentration of two solutions. This process takes place
at the molecular level. Osmosis’s practical applications are multiple and target
medicine, food safety, and engineering. However, osmosis process is not yet
recognized as a rich source of inspiration for designing computational tools. At
first glance, this well-known chemical process seems appropriate as a metaphor
in nature-inspired computation as it can underlie the development of a search
and optimization procedure. In this paper, we develop a novel algorithm called
OSMIA (Osmosis inspired Algorithm) for multiobjective optimization prob-
lems. The proposed algorithm is inspired by the well-known physio-chemical
osmosis process. For validation purposes, we have realized a case study in that
we compared our proposed algorithm with the state-of-art algorithm NSGAII
using some well known test problems. The conclusions of the case study
emphasize the strengths of the proposed novel OSMIA algorithm.

Keywords: Nature-inspired algorithm � Multiobjective � Osmosis process

1 Introduction

Nature-inspired computing represents a significant research area of the Artificial
Intelligence. It includes evolutionary algorithms [1], neural networks [2], cellular
automata [3], emergent systems [4–6], artificial immune systems [7], membrane
computing [8] and many others. Simply, nature-inspired computing is a growing field,
developed by mostly imitating biological models, for the development of the compu-
tational models and techniques. Among these, a prolific research chapter includes
nature-inspired algorithms for solving the multiobjective optimization problems
(MOPs). Given the MOPs complexity and due to the proven potential of the
nature-inspired algorithm for various complex problems, the developing and improving
the nature-inspired techniques for MOPs represents a challenging task.
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The research presented in this paper focuses on two complementary directions
involved and their functionality, and secondly, the adapting of the considered natural
models into powerful computing models. The palette of the natural paradigms, which
underlies the development of the nature-inspired metaheuristics, is diverse and
encompasses the functioning of the brain, Darwinian evolution, self-replication, col-
lective behavior, the vertebrate immune system, cell membranes, morphogenesis, and so
on. There are, moreover, a lot of other natural phenomena which could lead to the
development of computational methods. Of these, we identified a physicochemical
process, the osmotic process that stands out by its strength and simplicity. Nevertheless,
the physicochemical processes underlying the designing of the calculation methods are
reduced in number compared with the patterns inspired by the biological systems and
processes. Therefore, we identify as a new research domain to the identification of the
manner in which the osmosis paradigm could generate new computational models. In
this paper, we present such a novel algorithm that we called OSMIA.

The upcoming part of the paper is organized as follows: in the Sect. 2 we describe
the natural paradigm and propose a novel osmosis-inspired algorithm for multiobjec-
tive optimization. Section 2.3 presents the experimental results. In Sect. 3 we discuss
the main results and suggest further research directions.

2 Design of a New Metaheuristic Inspired by Nature

2.1 Natural Paradigm: Osmosis Process

Osmosis is the natural process of balancing the concentration of two solutions, a
process that takes place at the molecular level. The process of osmosis is described as
the diffusion of a solvent (usually water) through a semi-permeable membrane from a
solution with low concentration of solute (high water potential, or, Hypotonic) in a
solution with higher concentration solute (low potential of water, or, Hypertonic) to a
certain concentration level/gradient of the solution. It is a physical process in which a
solvent moves without receiving power through a semipermeable membrane (perme-
able to solvent but not the solution) separating the two different solutions. This effect
can be measured by increased pressure of the hypertonic solution, compared to the
hypotonic solution.

For instance, if two solutions of different concentration are separated by a mem-
brane, which is permeable only to the smaller solvent molecules but not to the larger
solute molecules, then the solvent will tend to diffuse across the membrane from the
less concentrated to the more concentrated solution. As in Fig. 1, having two containers
that communicate through a semipermeable membrane, one with less saline water and
the other one with a saline solution of a higher concentration, the molecules of the pure
water will migrate into the saline solution to reduce the concentration level until it
reaches a balance. This phenomenon is caused by the normal diffusion of the mole-
cules, and not by an external force.

Osmotic pressure is the pressure that must be applied to a solution to prevent the
solvent migration, in the natural sense of diffusion, through a semi-permeable mem-
brane. Considering Dh – the difference in height of the solution, q – the density of the
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solution and g – the gravitational acceleration, the osmotic equilibrium is achieved
when the osmotic pressure reaches the hydrostatic pressure, as follows:

Posmotic ¼ q � g � Dh ð1Þ

2.2 OSMIA a Novel Osmosis-Inspired Algorithm

We observed that the natural process of osmosis can be considered as a model that
underlies the development of a search and optimization procedure in multiobjective
optimization problems. The strategy inspired by osmosis involves the management of
three populations of molecules. These populations correspond to the water molecules
from the hypotonic and hypertonic solutions.

Fig. 1. Description of the osmosis process: before osmotic equilibrium (a); after osmotic
equilibrium is attained (b)

Fig. 2. First phase: molecules occupy the hypertonic region (left). During osmosis: the
molecules diffuse through the membrane (right)
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Let us consider:

(a) Hypotonic = the set of molecules in the hypotonic environment
(b) Membrane = the set of molecules which form the membrane
(c) Hypertonic = the set of molecules in the hypertonic environment

Let us consider n – the dimension of the search space and m – the number of
objectives. A molecule structure is given by the following formula.

mol ¼ locationSearch; locationObj;mass; type
� � ð2Þ

where: locationSearch ¼ x1; x2; . . .; xnð Þ represents the location of the molecule in the
search space; locationObj ¼ f1; f2; . . .; fmð Þ represents the corresponding location in the
objective space and type – represents an indicator of the actual state of the molecule
(type = 0 if mol 2 Hypotonic, type = 1 if mol 2 Membrane, type = 2 if
mol 2 Hypertonic).

For a minimization problem, the mass of the molecule is computed as follows,
signifying that those solutions, which have lower objective values, gain higher mass.

mass ¼ 1

,
1þ

Xm
i¼1

fi

 !
ð3Þ

In the first phase, a set of molecules is randomly generated. The size of the initial
set is given dim. Each molecule corresponds to a possible solution in the search space.
Some of these molecules form a virtual membrane. Establishing semi-permeable
membrane is made after the evaluation of the solutions. The molecules are divided into
two sets: Pareto non-dominated and dominated solutions. The molecules that corre-
spond to non-dominant solutions will form the “semi-permeable membrane”.

The hypotonic environment contains those molecules, which correspond to the
dominated solutions. The molecules which correspond to the Pareto non-dominated
solutions delimit the semi-permeable membrane. Those molecules, which diffuse
through the membrane, according to the Pareto domination criterion, are classified as
members of the hypertonic set. The osmotic process continues through the movement
of molecules of the hypotonic environment. Hypotonic molecules diffuse toward dif-
ferent positions in the search space. If after the movement of a molecule, the new
location of the molecule dominates the current position, this new position is retained
further and the molecule is marked accordingly; otherwise, if the new position corre-
sponds to a weaker solution, the old position is restored. A new position of a molecule
is better if the corresponding candidate solution dominates the solution which corre-
sponds to the molecule in the original location. If the new position dominates the
previous one and the previous position corresponds to a non-dominated solution in
current population, the molecule will be marked as a new member of the virtual
membrane.
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The proposed algorithm inspired by osmosis repeats the osmotic procedure, which
takes as long as the equilibrium between the hypertonic, respectively, hypotonic
environments, is not reached. The osmosis is considered complete when the hydrostatic
pressure balances the osmotic pressure, and therefore, the molecules will no longer
flow from the hypotonic to the hypertonic fluid. Following figures describe the osmotic
cycle for a bi-objective minimization problem (Fig. 3).

Let us consider: q1, q2, h1, h2 the pressures and heights of the two environments, at
a certain time during the osmosis process, the equilibrium is reached when P1 ¼ P2:

q1 � g � h1 ¼ q2 � g � h2

Therefore, while P1 [P2, the molecules from the hypotonic environment will
diffuse into the hypertonic environment.

The proposed Osmosis inspired Algorithm for Multicriteria Optimization (OSMIA)
works as follows: while a termination condition is not true, the osmosis procedure runs
and the virtual membrane is updated. The membrane consists of those molecules that
correspond to the non-dominated solutions, and it is a dynamic structure, as long as the
set of molecules varies along the osmosis process.

Figure 2 depicts a configuration of molecules in the objective space before the
osmosis procedure starts. The reference point is computed as follows:

reference ¼ r1; r2; . . .; rmð Þ; where ri ¼ max f ji ; j ¼ 1. . .dim
� �

Fig. 3. Finale stage: osmosis process is done; the molecules occupy the hypotonic region
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In addition, for the hypertonic and hypotonic sets of molecules, the centroids are
computed, as the arithmetic mean position of all the points in the corresponding set:

centroid Hypertonicð Þ ¼ H1;H2; . . .;Hmð Þ
centroid hypotonicð Þ ¼ h1; h2; . . .; hmð Þ

Relative to this reference point, the pressures and heights of the two environments
(hypotonic and hypertonic) can be computed. The “heights” of two environments are
given by the Euclidian distances between the centroids of the Hypotonic and,
respectively Hypertonic set and the reference point:

h1 ¼ distance centroid Hypotonicð Þ; referenceð Þ
h2 ¼ distance centroid Hypertonicð Þ; referenceð Þ

The “densities” of the two environments are computed by the following formulas:

q1 ¼
average masshypotonic

Volumehypotonic

q2 ¼
average masshypertonic

Volumehypertonic

The average_mass represents the arithmetic mean of the molecules’masses from the
specific environment. The Volume is estimated by Ritter’s algorithm [9] which finds the
bounding sphere that contains all of a given molecules from the specific environment.
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The Move procedure mimics the Brownian movement of the molecules within the
given space. Therefore, the procedure varies the location (considered in the search
space) of the current molecule.

For an intuitive approach, each molecule from the hypertonic and hypotonic sets
shifts its position, with a given probability p, in each of the ith dimension of the search
space. The probability of altering a specific coordinate is set to the value p = 1/n,
where n – represents the given dimensionality of the search space. The alteration of the
coordinates is influenced by one randomly selected element from the membrane
(non-dominated solutions).

2.3 Experimental Results

In order to illustrate the performance of the proposed OSMIA algorithm, we used
several well-known test problems ZDT1, ZDT2, ZDT3 [10] used in the most of the
researches and a state-of-art algorithm for multiobjective optimization: NSGAII [11].
NSGAII algorithm have many significant recent applications. For example we mention
the multi-production and multi-echelon closed-loop pharmaceutical supply chain
considering quality concepts [12], finding patterns in protein sequences [13]. For
performance assessment, we compute the hypervolume metric (HV) [14]. The hyper-
volume metric corresponds to the size of the objective space, which contains the
solutions that are Pareto-dominated by at least one of the members of the set. The
higher the hyper-volume value is, the better outcomes the algorithm provides. Among
the performance metrics, the hypervolume is popular as it captures both the conver-
gence to the true Pareto front and the distribution over the objective space.

For an objective comparison with the popular algorithm NSGAII [11], we set the
following parameters for the OSMIA: the size of molecule library is set to 50, and the
maximum number of fitness evaluation is set to 10000. The most appropriate parameter
values we have established experimentally. NSGAII’s parameters (that are considered
in different studies) are 100 individuals and 100 iterations per run. These settings assure
the same maximum number of function evaluations for both algorithms. The algorithms
run for 10 times and the hypervolume values are computed. The results are described in
Table 1.
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The results presented in Table 1, show that for each test problem we considered,
the proposed algorithm performs better than NSGAII.

3 Conclusions

In this paper, we explored a novel metaphor in Natural Computing, i.e. the natural
process of osmosis, and we proposed a new metaheuristic for multiobjective opti-
mization. The osmosis-inspired algorithm, OSMIA, is a population-based algorithm for
optimization, which mimics the process of molecules’ diffusion through a semi-
permeable membrane. The convergence toward the problem’s solutions is guided by
the virtual membrane which collects, at each cycle, the set of Pareto non-dominated
solutions. The molecules from the hypotonic environment diffuse through the virtual
membrane, into the hypertonic environment by using a procedure that alters the
original location and simulates Brownian movement. Each diffusion cycle is considered
done when the osmotic equilibrium is attained. In natural paradigm, the osmotic
equilibrium has attained the concentration is the same on both sides of a semi-
permeable membrane. In artificial model, the osmotic equilibrium is considered
achieved when the hydrostatic pressure balances the osmotic pressure.

OSMIA was compared with state of art algorithm for multiobjective optimization,
NSGAII and the results showed that our proposal performs better in all test scenarios.
As further research, we propose to investigate the recognized natural metaphor for
different problems and to investigate OSMIA’s performance for more difficult opti-
mization problems.

An advantage of the proposed algorithm is given by the minimum number of
user-defined parameters. Excluding the number of objectives, the number of variables,
and the size of the initial set of molecules (dim), no other parameter is needed.
Therefore, the Osmosis-inspired Algorithm can be considered a parameter free tech-
nique that may solve numerous optimization problems, which involve multiple criteria.
Among these, we will investigate the problem of determination of the types of
degradation that may affect heritage buildings due to multiple factors. The factors that
may affect the heritage buildings include physical, chemical and biological actions.
Also, we will consider OSMIA algorithm for a real-world problem such as identifying
the optimal strategy to manage the waste, which results from interventions on
buildings.

Table 1. Hypervolume: OSMIA versus NSGA2.

Test problem HV Mean value Maximum Standard dev

ZDT1 OSMIA 0.847666 0.85257 3.99E−03
NSGA2 0.775539 0.804457 2.01E−02

ZDT2 OSMIA 0.768684 0.783413 2.31E−02
NSGA2 0.579927 0.601901 2.41E−02

ZDT3 OSMIA 0.634674 0.650786 2.85E−02
NSGA2 0.514411 0.631122 7.66E−02
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Abstract. Development of computational systems that intelligently can solve problems
represents an important research direction. Many results described in the literature prove,
that the intelligence of a computational system can offer advantages in the problems solv-
ing versus a system that does not have intelligence. The adaptation is considered to be
an important property of many intelligent systems. Sometimes the adaptation is real-
ized by learning. In this paper, we propose a novel adaptive multiagent system called
ERMS (Extended Centralized Multiagent System with Cooperative Evolutionary Reorga-
nization Capacity), which uses an evolutionary learning technique in order to improve
the efficiency of the undertaken problems-solving. ERMS represents an extension of a
previously developed multiagent system called CCER (Centralized Multiagent System with
Cooperative Evolutionary Reorganization Capacity). The adaptivity of the ERMS multi-
agent system, consists in the capacity to reorganize its structure based on the information
available about the received problems for solving. The obtained results prove that a multi-
agent system successfully can use evolutionary algorithms to discover emergent patterns
of reorganization for the efficient solving of the undertaken problems. In case of com-
plex systems composed from a large number of interacting components, such emergent
behavior of the systems, if have as results improvements (i.e., autonomy, efficiency and
flexibility) in the problems solving it could be associated with intelligence.
Keywords: Multiagent system, Evolutionary algorithm, Genetic algorithm, Natural
computation, Adaptation, Evolutionary learning, Cooperative problem solving, Intelli-
gent agent, Emergence, Complex system, Evolutionary system

1. Introduction. “Intelligent” systems (usually agent-based) are used in many domains
of sciences. The development of the next generation intelligent systems (more intelligent
than the actually developed) is an important research direction. Highly intelligent sys-
tems will be inherently complex having many interacting components (sometimes hybrid
components) that require a very long time for their development. In the case of many
very complex systems all the necessary data, information and knowledge for their develop-
ment are obviously unavailable. Another aspect consists in the fact that it is necessary to
elaborate more consecutive versions. Even if an intelligent system has some autonomy in
increasing its intelligence sometimes by adaptation, there exists a point when the system
is unable to make other improvement by itself and it is necessary a human intervention
for the increasing of the system’s intelligence.

Intelligent agent-based systems represent one of the most important approaches used
for autonomous, efficient and flexible solving of difficult problems (tasks) and/or large
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numbers of simple problems in many domains [7, 20, 44]. The main motivation consists
in the properties of the agents that differentiate them from other computable systems.
Agent-based systems can be endowed with capacities that allow to intelligently process
computational hard (difficult/complex) problems [12, 19, 25]. There are many applications
of the intelligent agents in many domains, including health care [18, 26, 32, 33, 34],
which extend traditional developments. Recent implementations include applications,
like telehealth [43], analysis of spread simulation of infectious disease [46], web-enabled
healthcare computing [8], patients monitoring [17], patients management [30, 31], medical
diagnosis [44] and ubiquitous healthcare [29].
In this paper, an adaptive multiagent system called ERMS (Extended Centralized Multi-

agent System with Cooperative Evolutionary Reorganization Capacity) is proposed. ERMS
represents an extension, in order to operate in case of larger numbers of agents, of the
CCER multiagent system (Centralized Multiagent System with Cooperative Evolution-
ary Reorganization Capacity) developed during our previous researches [23]. The results
obtained during the development of CCER and ERMS multiagent systems prove that
evolutionary learning algorithms can be successfully used by multiagent systems to estab-
lish how to adapt a more efficient problem-solving strategy when the emergent patterns
of reorganization of the systems’ structure can be discovered.
The upcoming part of the paper is organized as follows. Section 2 analyzes some aspects

related with the intelligent adaptive systems. In Section 3 the novel adaptive multiagent
system called ERMS is described – the evolutionary learning algorithm used by the ERMS
system in order to learn different reorganizations is presented. At the end of Section 3
the correctness and efficiency in operation of the ERMS system is analyzed. In Section
4, ERMS System Intelligence is considered. In Section 5, the conclusions of the research
are presented.

2. Intelligent Adaptive Systems. Many difficult problems solving require a specific
sort of computational intelligence (capacities to intelligently handle the difficulties of the
problems-solving) [12, 45]. In general a problem is considered difficult (computational
hard) based on considerations such as the solving requires a large amount of resources
(some times distributed resources); the solving requires a large quantity of problem solv-
ing knowledge (some times distributed knowledge); the solving requires a large variety of
problem solving knowledge; the problem description contains different types of uncertain-
ties (missing or erroneous data), etc. Intelligent agents must precisely and flexibly handle
the solving of difficult problems or solving large amounts of difficult or simple problems.
Cooperative agents can form multiagent systems, in that they can collaborate during the
problems solving in order to make easier their solving and to improve the accuracy of the
obtained problems solutions [12, 19, 20, 45, 47].
Many times it is difficult or even impossible to endow an agent with the necessary

knowledge at the moment of its creation. Motivations may consist in considerations,
like: some information initially is not known and/or some information are changing in
time. These reasons motivate the necessity of endowment of the agents with autonomous
learning capability [12, 19]. The purpose of learning consists in improvements in the
efficiency and accuracy of the problems-solving.
In literature there are many adaptive multiagent systems [3, 4, 9, 10, 11, 15, 16, 23, 27,

28, 38, 39]. The adaptation many times is realized by leaning. One type of adaptation
of a multiagent system consists in the reorganization of the problem-solving resources, in
order to solve more efficiently the undertaken problems [10, 11, 23]. In a multiagent system
the agents members of the system are called problem-solving resources (the agents solve
the undertaken problems by the system) [10, 11]. An agent uses different resources (i.e.,
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processing power, memory) during its life cycle for the problems solving. The significance
of adaptability of the multiagent systems described in the papers [10, 11] is to allocate
the resources that are necessary for the problems-solving. The adaptation in a multiagent
system is realized at the system’s level.

The papers [3, 15, 28] present some adaptive multiagent systems that efficiently use
the available resources in the problems-solving process. In order to satisfy either the
surplus or lack of resources, the presented multiagent systems self-organize depending on
the necessities. The agents are endowed with capacity of decomposition and composition.
The decomposition represents the capacity of an agent to create an identical copy with
itself. The copy of an agent can solve the same set of problems like the initial agent
(has the same problem-solving specializations). By composition, two agents are combined
to become one in order to free computational resources. An agent obtained as a result
of the composition of more agents has all the specializations of the agents used in the
composition.

TRACE [10, 11] is an adaptive multiagent system, formed from coalitions of agents.
The adaptability of the TRACE system consists in the capacity of each coalition to buy or
sell resources (agents). Within the frame of the TRACE multiagent system, the resources
are distributed in coalitions. The distribution is realized, depending on the necessities
or on the surplus of resources within each of the coalitions. A coalition desires to buy
resources, if it does not detain all the necessary resources for solving of problems. A
coalition can sell resources if it does not need all the resources.

3. ERMS Multiagent System Description.

3.1. Previous researches. CCER is an adaptive coalition-based multiagent system de-
veloped during our previous researches [23]. The adaptability of the system consists in
the capacity to reorganize its structure depending on the received problems for solving.
For the establishment of the reorganization an evolutionary learning algorithm is used.
For the problems allocation for solving, a novel allocation protocol is used that represents
an adaptation of a centralized problem allocation protocol as described in [12, 45].

The main advantage of the CCER multiagent system consists in the capacity to adapt
its structure in order to solve more efficiently the undertaken problems. Simulation results
show the increased efficiency of the CCER multiagent system when larger numbers of
problems are transmitted for solving [23]. CCER system can reorganize its structure
at the beginning of a problems solving cycle if some specific information, called problems
pattern about the problems transmitted for solving exist. A problems solving cycle begins
at the undertaking of a set of problems, and is finished when all the problems are solved.
The establishment of reorganization requires a polynomial complexity search in a rule
base. Thus, in the verification of the preconditions of some rules from the rule base, the
identified rule is fired, neglecting the rest of the rules.

3.2. ERMS multiagent system architecture. Each agent member of an intelligent
cooperative multiagent system must have a role. A role defines the manner in which
the agents who undertake that role contribute to the problems solving in the multiagent
system [12, 19]. An agent who undertakes a role must have a set of specializations and
necessary resources which allows to the agent to fulfill its role. A multiagent system
architecture specifies different generic information [12, 45] (i.e., existent roles, relations
between the roles, organization of the agents, specific cooperative problems solving meth-
ods used in the frame of the system, etc.) about the multiagent systems endowed with
that architecture. The information that must describe a multiagent system architecture
depends on conditions, like: complexity of the system, number of member agents, the
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problems that have to be solved, the cooperative problem solving methods that can be
used by the multiagent system, etc.
In the following, we propose a novel multiagent system architecture called ERMS (Ex-

tended Centralized Multiagent System with Cooperative Evolutionary Reorganization Ca-
pacity). We call ERMS a multiagent system with the ERMS architecture. The proposed
architecture defines: a partially centralized multiagent system organization; a specific
adaptation based on the reorganization of the system; a specific evolutionary learning al-
gorithm; a specific cooperative problems-solving and the roles that can be undertaken by
the agents. We call a problems pattern the description, values of different parameters re-
lated to a set of problems transmitted for solving, which may consists in information, like:
what type of problems are transmitted for solving, the number of problems transmitted
for solving.
In an ERMS multiagent system there are defined the following roles (see Figure 1): by

centralized problem allocation for solving denoted supervisor ; by problem-solving denoted
contractor ; by cooperative problem-solving (problem solving and local problem allocation
for solving) denoted manager. An agent who undertakes the contractor role during the
fulfilling of the role will solve problems. An agent who undertakes the manager role
during the fulfilling of the role will solve problems and allocate problems for solving to
some agents members of the system. An agent who undertakes the supervisor role during
its life cycle will allocate problems for solving to other agents. In the multiagent system
there is only one agent with supervisor role. The agent initially established with the
supervisor role is not changing its role during the multiagent system’s life cycle.

Roles

Contractor Role Manager Role Supervisor Role 

Problem Solving Problem Allocation  Cooperative Problem 

Solving

Problem allocation Problem Solving 

Figure 1. The roles in the ERMS multiagent system

An ERMS multiagent system at a problems-solving cycle is composed from a set Ms
(1) of agents, each of them having as unique identifier a natural number that is not
changed during its life cycle. Each agent, except the supervisor, is associated one of
the following abbreviations: “Ct” for contractor agents (for example, the notation Cti
has as meaning the agent with the identifier i has contractor role), “Mg” for manager
agents (for example, the notation Mgj has as meaning the agent with the identifier j has
manager role) and “Fr” for free agents (for example, the notation Frk has as meaning the
agent with the identifier k has contractor role and it operates as free agent) that illustrate
the specific of the agents contribution to the problems-solving. The agents, except the
supervisor, can change their role during the system’s operation. For example, an agent at
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a problems-solving cycle may operate as contractor and at another problem solving cycle
as manager.

Ms = Co ∪ {Su} ∪ Fr. (1)

Fr denotes a set of agents called free agents. A free agent Frh (Frh ∈ Fr, ID(Frh) =
h) has contractor role, Role(Frh) = contractor. A free agent does not belong to any
coalition. Su is the agent with the supervisor role, Role(Su) = supervisor. Co represents
the set of coalitions of agents.

A coalition of agents is composed from one or more agents with manager role and usu-
ally more agents with contractor role. In a coalition of agents each agent with contractor
role is subordinated to a single agent with manager role. Figure 2 presents a coalition
of agents denoted Coq. Mgb (Mgb ∈ Coq, role(Mgb) = manager, ID(Mgb) = b) and
Mgc (Mgc ∈ Coq, role(Mgc) = manager, ID(Mgc) = c) represent the managers of the
coalition. Ct1, Ct2, . . . , Ctx ({Ct1, Ct2, . . . , Ctx} ⊂ Coq) represent the contractors subor-
dinated to Mgb. Cta, Ctb, . . . , Ctm ({Cta, Ctb, . . . , Ctm} ⊂ Coq) represent the contractors
subordinated to Mgc. Pf , . . . , Pv represent the problems that must be solved by Mgb and
the subordinated agents. Pg, . . . , Pz represent the problems that must be solved by Mgc
and its subordinated agents. The dashed arrows between the agents used in Figure 2,
illustrate the communication and cooperation links between the agents. ta indicates a
link by cooperation type (problem allocation for solving) between the agents.

ta

Ctx

Ct2

Mgb

Ct1

EnvironmentP2

P3P4

Pv

ta ta

ta

Mgc

Cta

Ctz

Ctm

Pv

Pz

ta

ta

Figure 2. A coalition Coq of agents in the ERMS system

Figure 3 presents an ERMS multiagent system at a problems solving cycle, composed
from the disjointed coalitions Co = {Co1, Co2, . . . , Con} (∀i 6= k, Coi ∈ Co,Cok ∈
Co,Coi∩Cok = ∅), the supervisor agent Su and the free agents Fr={Fr1, F r2, . . . , F rm}.
P = {P1, P2, . . . , Py} represents the problems transmitted for solving to Su. The dashed
arrows used in Figure 3 illustrate the cooperation links in the multiagent system. tb
indicates a link by cooperation type between the supervisor agent and a free agent. tc
indicates a links by cooperation type between the supervisor agent and a coalition of
agents.

An agent Ctk with contractor role (role(Ctk) = contractor, ID(Ctk) = k) is endowed
with a specialization set Spec(Ctk) = {S1, S2, . . . , Sr}, which allows the solving of prob-
lems from a set Cl = {Cl1, Cl2, . . . , Clr} of classes of problems; where Si represents
the specialization necessary for solving of the problems from the class Cli of problems
(∀i = 1, r, Si → Cli).

An agent Mgk with manager role (role(Mgk) = manager, ID(Mgk) = k) is endowed
with a specialization set Spec(Mgk) = {S1, S2, . . . , Sr} ∪ {A1, A2, . . . , Ae}. S1, S2, . . . , Sr
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…

Environment

tc

tc

tb

tb

tc

tb

Co1

Co2 Con
…

Su

Fr1

Fr2

Frm

P1

P2

Py

Figure 3. ERMS multiagent system at a problems solving cycle

allows the solving of the problems from a set Cl = {Cl1, Cl2, . . . , Clr} of classes of prob-
lems; where Si represents the specialization necessary for solving of the problems from
the class Cli of problems. If Mgk is manager in the coalition Coy, then A1, A2, . . . , Ae

represent knowledge detained by Mgk about the subordinated contractor agents from
Coy.
As examples of information detained by a manager agent Mgm from a coalition Cou

(Mgm ∈ Cou; role(Mgm) = manager; ID(Mgm) = m), about the subordinated contrac-
tor agents, we mention: the number of contractor agents from Cou; the specializations of
each contractor agent; the information detained about the problems that are undertaken
for solving by each contractor agent.
Su detains information about the coalitions of agents and the free agents. As examples

of information detained by Su about a free agent Frp (role(Frp) = contractor, ID(Frp) =
p), we mention: Frp specializations and capacity; the problems that are currently solved
by Frp. As examples of information detained by Su about a coalition Cor (Cor ∈ Co),
we mention: the number of member agents of Cor; the capacity of the contractor agents
members of Cor; the problems that are currently solved by Cor. The problems are
transmitted for solving to Cor by Su. Each manager from Cor transmits the obtained
problems solutions to Su. However, Su knows when in the Cor coalition is finished an
undertaken problem-solving.

3.3. The ERMS system operation. The ERMS multiagent system represents an ex-
tension of the CCER multiagent system [23]. One of the improvements consists in the use
of coalitions with more manager agents, each of them with a set of subordinated contrac-
tor agents. This improvement was realized in order to eliminate the excessive centralized
architecture of the CCER multiagent system. The centralization in a large-scale multi-
agent system may be a bottleneck in the operation of the system. Another adaptation
consists in the use of genetic problem solving specializations (problem solving methods
based on genetic algorithms).
Figure 4 illustrates a single problem-solving cycle in the ERMS multiagent system. A Ph

problem-solving begins at its undertaking and is finished when its solution Soh is obtained.
Frv (Frv ∈ Fr, role(Frv) = contractor, ID(Frv) = v) represents a free agent. Coa
(Coa ∈ Co) represents a coalition of agents. Mgy (Mgy ∈ Coa, role(Mgy) = manager,
ID(Mgy) = y) a manager in Coa. Cts (Cts ∈ Co, role(Cts) = contractor, ID(Cts) = s)
is a contractor agent in Coa subordinated to Mgy.
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Soh

Ph

Sok

Ph
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Ph

Soh

Ph

Problem 

Sender (Ph)

Su

Supervisor

Mgy

Manager in Coa

Frv

Free agent 

Cts

Contractor subordinated 

to Mgy

Figure 4. A problem’s solving cycle in the ERMS multiagent system

In the ERMS multiagent system, each coalition and free agent can solve problems
transmitted for solving by the supervisor agent. In a coalition, each transmitted problem
is received by a manager from the coalition. In the case of a received problem, the
manager agent will solve the problem or will transmit it for solving to a subordinated
contractor agent. The manager agents from the coalitions are responsible for the problems
solutions undertaking from the subordinated contractor agents and their transmission to
the supervisor agent.

A problem denoted Ph transmitted for solving has the description Desch (2).

Desch : 〈senderh, fh, typeh, priorityh, Sq〉. (2)

In (2) there are used the following notations: senderh specifies the sender of Ph; typeh
represents the type (minimization or maximization) of Ph; fh represents the objective
function that must be minimized or maximized; priorityh represents the priority of the
problem; Sq represents the specification of the specialization to be used for the problem-
solving. It is always solved a maximization problem, a received minimization problem is
transformed into a maximization one.

To a specialization Sq is associated a set of parameters called prq (3) having an associ-
ated identifier inq.

(prq, inq) : 〈seq, oiq, omq, cdq, lnq, ncq, nq, pcq, pmq〉. (3)

seq specifies the used selection operator (for example, is used the Monte Carlo linear
selection method, seq=“Monte Carlo”). cdq describes the encoding of the genes from the
chromosomes (for example, the genes are binary encoded, cdq ∈ {0, 1}). lnq represents
the length of the chromosomes (for example, lnq = 20 denotes chromosomes composed
from 20 genes). Each chromosome obtained during a problem-solving process has the
same length. ncq represents the number of chromosomes from a generation (for example,
ncq = 50). Each generation has the same number of chromosomes. nq represents the
number of the created generations of chromosomes during a problem-solving. oiq specifies
the used crossover operator (with a single crossover point, for example). omq specifies
the used mutation operator. pcq represents the probability of crossover. pmq specifies the
probability of mutation.
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In (4) is presented a genetic problem solving specialization denoted Sq.

(Sq, idq) : 〈inq, outq, typeq,methodq〉. (4)

In (4) there are used the following notations: Sq specifies how the specialization is called
(to each specialization is associated a name); idq denotes Sq identifier; inq denotes the
identifier associated to the input parameters for Sq; outq denotes the output parameter
for the Sq specialization (the problem solution obtained after its solving); typeq represents
the type minimization or maximization; methodq contains the description of the problem-
solving method. A specialization is defined by a problem-solving method, the problem
type and the input parameter values with that are initialized the parameters of the genetic
algorithm.
An agent with contractor role receives problems specified in the form (2). The agent

based on the problem description establishes the necessary problem-solving specialization
by the form (4). The result obtained after the running of the genetic method described
in the specialization represents the problem solution. The solving of a problem using
a genetic algorithm does not supposes the interpretation of a syntactically described
code. However, it does not decreased the problem-solving time. The manager agents can
solve problems like the contractor agents. A manager agent must have specializations,
which allows problems allocation for solving to contractor agents. A manager agent must
distribute a problem to a contractor agent if it does not have the necessary capacity to
solve the problem.
A problem-solving specialization does not represent a code difficult to use in the probl-

ems-solving. The form (4) can be adapted for problems solving using different problem
solving methods based on evolutionary algorithms (evolutionary programming, genetic
programming, evolutionary strategies, etc.).

3.4. The adaptivity of the ERMS multiagent system. In the following, we con-
sider an ERMS multiagent system, denoted ASE. The problems transmitted for solv-
ing at a problems-solving cycle may match a problems pattern. A problems pattern de-
scribes different information related with the transmitted problems for solving. Formula
(5) presents the general form of a problems pattern denoted Pati specified by the spe-
cializations denoted S1, S2, . . . , Sn used in the problems-solving; numbers of problems
denoted nr1, nr2, . . . , nrn by each specialization and the associated priorities denoted
priority1, priority2, . . . , priorityn.

Pati : 〈S1, nr1, priority1;S2, nr2, priority2; . . . ;Sn, nrn, priorityn〉 (5)

ASE system reorganization is described by a set Rl (6) of rules detained by Su in a
rule base.

Rl = {Rl1, Rl2, . . . , Rlk}. (6)

An Rli (Rli ∈ Rl) rule has the form (7).

(Rli, Idi) : 〈Pati〉 → 〈Insti〉. (7)

Idi represents the Rli rule identifier (each rule has as identifier a unique natural number).
Pati represents a problems pattern. Insti defines an instance of the ERMS multiagent
system architecture, distribution of the agents in coalitions and allocation of roles to the
agents.
ASE system can reorganize autonomously its structure at the beginning of each probl-

ems-solving cycle, if the problems pattern is known at the beginning of the problems-
solving cycle, and Su has a rule in its rule base whose precondition matches the prob-
lems pattern. A reorganization determination implies a search by Su in its set Rl =
{Rl1, Rl2, . . . , Rlk} (6) of rules. The rule whose precondition matches the known problems
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pattern is selected. The postcondition of the selected rule defines the new instantiation
of the ASE system. Su, after establish the multiagent system instance, announces each
agent to which coalition must migrate and what role must undertake or must operate as
a free agent. Each agent will migrate autonomously into the coalition which must belong
or will operate as a free agent. The determination of a new instance of the ASE system
has a polynomial complexity.

Fundamental aspects of the evolutionary algorithms has been analyzed by many authors
[1, 5, 13, 20]. Evolutionary learning techniques that are based on methods of evolutionary
computation [23, 24], represent a subclass of learning techniques [12, 19]. In the fol-
lowing, an evolutionary learning algorithm called Evolutionary Reorganization Learning,
which allows the construction of a rule by the form (7), denoted Rli is described. Each
rule detained by Su will be created using the learning algorithm. ASE system has no+1
member agents (a supervisor agent and no agents that can operate in the frame of the
coalitions undertake contractor or manager roles or can operate as free agents with con-
tractor role). Each agent, except the supervisor agents is attached a unique identifier (in
the system does not exists two agents with the same identifier).

Algorithm – Evolutionary Reorganization Learning

{In: Pati – a problems pattern}
{Out: Rli – the constructed rule}
Step 1. The creation of the initial generation of chromosomes.

t = 1.

@Initialize the chromosome population P (t).

Step 2. Search for the best-fitted instantiation of the ASE architecture.

While (t ≤ gen) do

@Create a copy Cry of the best-fitted chromosome from P (t).

@Select chromosomes from P (t) using a selection method. Choose chromosomes from
P (t) to enter in the mating pool mp. Let P1 be the selected chromosomes.

@Using the rc crossover operator applied with the probability pr recombine the
chromosomes in mp forming the population P2.

@Mutate the chromosomes in P2 using the operator mc, with the probability pm.

@Replace in P2 the worst-fitted chromosome with Cry. Let P2 be the obtained
population of chromosomes.

t = t+ 1.

P (t) = P2 (the new generation of chromosomes is constructed).

EndWhile.

Step 4. Construction of the rule that describes the ASE system’s organization.

@Select the best-fitted chromosome Cry from P (t).

@Generate a unique rule identifier denoted Idi.

@Based on the selected chromosome Cry construct the Rli rule.

(Rli, Idi) : 〈Pati〉 → 〈Insti〉.
EndEvolutionaryReorganizationLearning.
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gen, n, pm, pr, no are parameters of the algorithm. gen represents the number of gener-
ations of chromosomes constructed during a learning process. Let us denote with P (t) the
t ’th generation of chromosomes. In P (1) each chromosome is generated by random. Each
generation has the same number n of chromosomes. Each chromosome has no genes. A
chromosome Crw = [G1, G2, . . ., Gno] specifies an instance of the ASE architecture.
Except Su, to each agent Agj (ID(Agj) = j) a gene Gj = (vj[1], tj[2], wj[3]) corresponds

in each chromosome. The first layer parameter value vj from the gene Gj specifies the
affiliation of Agj to the coalition with the identifier vj. Each coalition is identified with a
natural number vk, where vk ∈ [1, no]. All the agents with the same value vk associated
to their corresponding gene are members of the same coalition, the coalition with the
identifier vk. A gene that has a value different from all other genes’ value means that
the corresponding agent to the gene is a free agent. The second layer value tj (tj ∈ T ,
where T = {′m′,′ c′}) from the gene Gj specifies the role of the Agj agent. If tj =′ m′

then role(Agj) = manager. If tj =
′ c′ then role(Agj) = contractor. If tj =

′ c′ and Agj is
not a free agent, then wj value specifies the identifier of the manager agent from the same
coalition to who will be subordinated Agj. A free agent, denoted Agj, has contractor role
(role(Agj) = contractor, tj =′ c′) and wj = 0 (does not subordinated to any manager
agent). An offspring generation is created using specific selection, crossover and mutation
operators.
By mutation, denoted mc, are generated new chromosomes by small variations of the

genes’ values in the chromosomes. We define mc as an application by the form (8). Cr
specifies the chromosome space.

mc : Cr → Cr. (8)

The mutation is applied on each layer of each gene Gj = (vj[1], tj[2], wj[3]) from each
chromosome with the probability pm, pm = {pmv, pmt}, where pmv, pmt, are the corre-
sponding probabilities to the mutation of vj and tj. pmt represents the probability to be
created a contractor agent that will operate in the frame of a coalition. 1−pmt represents
the probability to be created a manager agent, where pmt > 1 − pmt. By mutation, the
vj value may increase or decrease, the new value of vj must be between 1 and no.
If vj specifies that the agent is a free agent then there is not applied the mutation to

the rest of the layers. tj is set to
′c′ (tj =

′ c′ – the agent will operate as having contractor
role) and wj is set to 0 (wj = 0 – the agent is not subordinated to any manager agent).
If vj does not specify a free agent then there is applied the mutation to the second layer

tj that could change its value, the new value of tj must be in the set T = {′m′,′ c′}, where
tj ∈ T . If tj =

′m′ then wj value is set to 0. If tj =
′c′ then is randomly generated one of

the identifiers of manager agents from the same coalition and the identifier is set to wj.
In case of each coalition is verified if all the managers of the coalition have subordinated

contractor agents. The role of a manager that does not have subordinated contractor
agents is changed into contractor and the agent is subordinated randomly to a manager
agent from the same coalition that have at least on other contractor.

The crossover rc is used to create new chromosomes by combining the genetic informa-
tion of parent chromosomes. We define rc as an application by the form (9).

rc : Cr2 → Cr2. (9)

rc realizes a (2, 2) transformation, two parents are combined to obtain two offspring.
rc is applied with the probability {pr; {prv, prt, prw}}; where pr represents the probability
of the chromosomes to be selected for inclusion in the mating pool, prv, prt, prw represent
probabilities to crossover the layers 1, 2 and 3 in the chromosomes. During the crossover
of two chromosomes there are recombined the values of the genes from the same layer: [1]
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for the vi values (that specify the agents membership to coalitions); [2] for the ti values
(that specify the agents roles) and [3] for the wi values (if an agent is contractor then wi

specify its manager agent to who the contractor agent is subordinated).
Each chromosome of a population is evaluated using a real-valued fitness function Fit

by the form (10), where ∀Crb ∈ Cr, F it(Crb) ≥ 0, which counts how efficiently the
multiagent system with the structure specified by the chromosome Crb can solve the
undertaken problems at a problems-solving cycle.

Fit : Cr → R+. (10)

A chromosome’s fitness is evaluated simulating the problems-solving that matches the
problems pattern. The efficiency of the problems-solving at a problems solving cycle, has
as meaning the problems solving time (all the undertaken problems at the beginning of
the problems-solving cycle are solved). Let Crh (Crh ∈ Cr) and Crk (Crk ∈ Cr) two
chromosomes. Fit(Crh) > Fit(Crk) means that Crh is best-fitted then Crk (it is solved
a maximization problem, an initially transmitted minimization problem is transformed to
a maximization one). The best-fitted chromosome Cry from the least generation P (gen)
specifies the postcondition of the constructed Rli rule.

For each gene Gj = (vj, tj, wj) from a chromosome Crw must be satisfied the following
validity restrictions:

A). Let vj = nrj, then nrj ∈ [1, no] and must have the values 1,. . . , nrj − 1 in the first
layer of the Crw chromosome;

B). Let tj = trj, then trj ∈ {′m′,′ c′};
C). Let wj = wrj. If trj =

′ c′ and nrj does not have a unique value (it does not specify
a free agent), then wrj must specify the identifier of a manager agent from the same
coalition (coalition with the identifier nrj) as the agent with the identifier j. If trj =

′ m′

then wrj = 0. If trj =
′ c′ and nrj has a unique value (specify a free agent), then wrj = 0.

D). Let tj = trj. If trj =
′ m′ then it must have at least one subordinated contractor

agent.
In the case of each invalid chromosome obtained during a learning process (are not

satisfied all the restrictions (A), (B), (C) and (D)) a transformation Trf (11) is applied
that corrects the invalid genes values.

Trf : Cr → Cr. (11)

The validity of each randomly generated chromosome from the initial generation is ver-
ified. In case of an invalid chromosome is applied the transformation Trf (11). During
a learning process, the validity of each newly obtained chromosome by applying the mu-
tation mc or crossover rc is verified. A chromosome is considered valid if it specifies a
correct multiagent system structure.

A survival mechanism based on the fitness measure Fit is applied to select the chromo-
somes of the new generation from the offspring and parent generations. In the Evolution-
ary Reorganization Learning algorithm two types of selections are used. The selection for
crossover operator is used to decide which members of the recent generation P (t) will be
used as parents of the new generation P (t+1). The selection for the replacement operator
is used to obtain, which chromosomes from P (t) and their offspring will effectively enter
in the new generation P (t+1). The best-fitted chromosome Crz from the last generation
P (gen) represents the solution (a valid multiagent system structure).

3.5. Correctness in operation of the ERMS system. During its operation for the
reorganization, the ERMS system uses a set of learned rules. All the rules are correct,
their postcondition specify correct reorganization of the ERMS system. The correctness
of the Evolutionary Reorganization Learning algorithm can be theoretically demonstrated.
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Each chromosome obtained during a learning process, represents a valid instantiation of
the ERMS multiagent system architecture. Only themc (8) mutation and rc (9) crossover
operators can modify the genes values from the chromosomes. A transformation Trf (11)
is applied to each obtained invalid chromosome. However, at the end of each learning
process a correct multiagent system instantiation is obtained. In every new generation,
the best-fitted chromosome from the previous generation is transferred, which guarantees
that the best multiagent system instantiation is not lost during the learning process.
The ERMS system can reorganize its coalitions at the beginning of each problems-

solving cycle, if there is known at the beginning of the problems-solving cycle the problems
pattern and there is a rule whose precondition match that pattern. In case of selection
of a rule at the beginning of a problems pattern, the postcondition of that rule specifies
the necessary correct reorganization of the system. If it is not matched any rule at the
beginning of a problems solving cycle then the system remains with the previous structure.
For the validation of the ERMS multiagent system, there have been realized experimen-

tal simulations for the learning processes and the testing of the system’s operation with
some learned rules by sending to the system problems at the beginning of problem-solving
cycles with known and unknown pattern. The simulations purposes were to establish the
measure in that the distribution of agents in coalitions and allocation of roles to the
agents, influences the efficiency of the problems-solving. During the simulations, they
used agents endowed between 1 and 16 problem-solving specializations (a specialization is
a problem-solving method where some parameters could be initialized during a problem-
solving). Requirements for an agent to solve a problem is to have the necessary role (role
that allows problems-solving), the necessary problem-solving specialization and resources.
We have simulated learning processes were generated at least gen = 57 generations

of chromosomes. The problems have been solved in problems-solving cycles. At each
problems-solving cycle the problems have been transmitted for solving at the beginning
of the cycle. In the case of each problems pattern, there have been realized 50 simula-
tions for the construction of the rule based on the problems pattern. The necessity to
run multiple times learning processes on the same data was because it has been used
an evolutionary learning technique (as in any heuristic search in the problem space run-
ning the same evolutionary algorithm on the same data with the same parameters many
converge to different solutions). The most appropriate parameters values used during
the simulations were: mutation probability pm = {pmv, pmt} = {0.0093, 0.8}; crossover
probability {pr; {prv, prt, prw}} = {0.09; {0.2, 0.3, 0.33}}. There were made experiments
for the following conditions: numbers of problems transmitted for solving (denoted prno):
40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150; numbers of agents (denoted no):
10, 20, 25, 30, 35 and 40; chromosomes numbers (denoted n) in the generations (during
a learning process each generation having the same number of chromosomes): 20, 25, 30
and 35.
Figures 5-8 present the changing of the average problem-solving time (expressed in

ms milliseconds), from generation to generation (each generation where composed from
30 chromosomes), for the first 29 generations of chromosomes using 25 agents, and 57
generations of chromosomes using 20 agents for the construction of 3 rules.
Figure 5 presents the time decrease using no = 20 agents, for the construction of 3 rules,

based on 3 problems patterns, each of them composed from prno = 70 problems. The
using of the rules has an improvement (as time decrease) of ∼ 28% for Rla, ∼ 37% for Rlb,
and ∼ 25% for Rlc. By using no = 20 agents that solve prno = 70 problems arranged in
patterns the average improvement obtained during the simulations was approximatively
by 29%.



ERMS MULTIAGENT SYSTEM 1183

Figure 6 presents the time decrease using no = 20 agents, for the construction of 3
rules, based on 3 problems patterns, each of them composed from prno = 140 problems.
The using of the rules has an improvement of ∼ 20% for Rld, ∼ 23% for Rle, and ∼ 20%
for Rlf . By using no = 20 agents that solve prno = 140 problems arranged in patterns
the average improvement obtained during the simulations was approximatively by 22%.

Figure 7 presents the time decrease using no = 25 agents, for the construction of 3
rules, based on 3 problems patterns, each of them composed from prno = 70 problems.
The using of the rules has an improvement of ∼ 30% for Rlg, ∼ 40% for Rlh, ∼ 20% for
Rli. By using no = 25 agents that solve prno = 70 problems arranged in patterns the
average improvement obtained during the simulations was approximatively by 31%.

Figure 8 presents the time decrease using no = 25 agents, for the construction of 3
rules, based on 3 problems patterns, each of them composed from prno = 140 problems.
The using of rules has an improvement of ∼ 21% for Rlj, ∼ 33% for Rlk, ∼ 19% for Rll.
By using no = 25 agents that solve prno = 140 problems arranged in patterns the average
improvement obtained during the simulations was approximatively by 24%.

During a problems-solving at a problems solving cycle there are always some costs
associated with the computation time. There is a cost for checking if the problems sent for
solving respects a known pattern (there is a rule in the rule base that has as precondition
the problems pattern which have been learned during a learning process). If the problems
do not respect any pattern then there is a cost without any improvement. If at the
beginning of a problems-solving cycle is verified a rule, then there is a cost for the checking
of the reorganization.

No.1 No.5 No.9 No.13 No.17 No.21 No.25 No.29 No.33 No.37 No.41 No.45 No.49 No.53 No.57

Rla 814.2 814 809.1 791.2 760.1 730.3 720.1 719 700.1 690.8 670.2 645.1 640 639.9 636.4

Rlb 981.7 966 940.1 910.4 899.7 830.5 821.3 809.2 799.1 795 791.9 750.6 734.5 723.1 716.5

Rlc 1051. 1007. 995 981.7 980.9 971 961.4 945.2 923.1 910.3 890.6 873.6 851.4 837 838.1
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Figure 5. Construction of the rules Rla, Rlb, Rlc, generations 1-57,
no = 20, prno = 70, n = 30

No.1 No.5 No.9 No.13 No.17 No.21 No.25 No.29 No.33 No.37 No.41 No.45 No.49 No.53 No.57

Rld 1809.5 1790.1 1760.3 1739.4 1719 1701.9 1680.6 1650 1645.3 1613.4 1590.7 1547.3 1523.2 1510.2 1507.9

Rle 1963.5 1940.2 1890.1 1845 1795.3 1740.6 1701.5 1690.3 1640.6 1630.2 1619.7 1610.9 1601 1590.2 1589.9

Rlf 2103.5 1997.2 1940.3 1907.7 1870 1860 1845.5 1813.6 1790.3 1795.7 1780.9 1770.5 1750.4 1751.3 1752.9
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Figure 6. Construction of the rules Rld, Rle, Rlf , generations 1-57,
no = 20, prno = 140, n = 30
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No.1 No.3 No.5 No.7 No.9 No.11 No.13 No.15 No.17 No.19 No.21 No.23 No.25 No.27 No.29

Rlg 723.8 720.1 712 709.3 682 675.1 670.2 650.5 640 610.5 600.1 590.3 561.8 557 556.7

Rlh 785.4 780.1 760.3 741.7 701 692.7 650.7 610.4 609.1 600.5 581.7 570.2 569.6 566 561

Rli 841.4 839.9 810.2 803.6 791.2 783.9 777.6 769.2 752.9 731.9 720.6 710 707 705.7 701.1
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Figure 7. Construction of the rules Rlg, Rlh, Rli, generations 1-29,
no = 25, prno = 70, n = 30

No.1 No.3 No.5 No.7 No.9 No.11 No.13 No.15 No.17 No.19 No.21 No.23 No.25 No.27 No.29

Rlj 1447.6 1400.3 1395 1380.7 1350.1 1330.3 1310.1 1295.1 1280.2 1271.1 1209.1 1199.4 1198.6 1199.2 1196.3

Rlk 1570.8 1560.2 1551.1 1329.2 1311.8 1312.3 1300.2 1295.1 1296.7 1280.2 1190.7 1187.4 1187.7 1180.2 1181

Rll 1682.8 1680.7 1609.4 1595.7 1560.4 1549.3 1517.4 1523 1512.9 1511.4 1510.9 1509.1 1499.7 1480.2 1414.1
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Figure 8. Construction of the rules Rlj, Rlk, Rll, generations 1-29,
no = 25, prno = 140, n = 30

The testing of the system was realized using 25 agents (rules constructed for a system
composed from 25 agents) by sending to it 60% known and 40% unknown problems pat-
terns. The results of simulations show an average improvement of about 19.14% decrease
in the solving time when the system reorganizes its structure versus the system does not
(the average decrease of the solving time was 23.24%, with 4.1% reorganization costs).
The optimal number of parameters related to the number of agents was 25. The most
appropriate number of chromosomes in the simulation settings was 30. A smaller number
of chromosomes have increased the number of necessary generations, increasing the total
learning time. A larger number of chromosomes have not increased the convergence time,
and after 29 and 57 generations it does not have significant improvement.

4. Considerations Related with the Intelligence – ERMS System Intelligence.
In numerous studies are given definitions and hypotheses related with different types of
biological intelligence, like human intelligence [14, 36, 37, 40], animal intelligence [2] and
plant intelligence [41, 42]. Based on some recent studies [2, 14, 36, 37, 40, 41, 42], we
can conclude that the biological intelligence in general, human intelligence particularly
could not be defined unequally because it is not completely understandable. Some of
the difficulties in its understanding consist in aspects like the biological complexity and
variety. Human intelligence cannot be defined but may be measured from different points
of view. The psychometric approach is by far the most widely used in practical settings
for measurement of the human intelligence [36].
The humans have attained the actual level of intelligence during a very long evolution.

As long as the intelligence of the humans and computational systems are completely
different, they cannot be directly compared; therefore, the intelligence must be evaluated
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based on different considerations. In many researches the biological intelligence represents
a source of inspiration for the development of intelligent systems.

We consider the “intelligence” a property (or a set of properties) of a system (usually an
agent) that emerges in some improvements in the problems-solving, many times consist-
ing in increased autonomy, precision and flexibility of the problems-solving. Commonly
the computational systems intelligence is considered just based on some properties, like
capacity to: learn, adapt, evolve etc. Such considerations as they are only specified could
not be considered rigorous for a system’s intelligence assessment.

An agent must have only the necessary intelligence. Sometimes, unnecessary intelli-
gence, usually in the case of solving very simple problems, may decrease the efficiency of
the problems-solving. Usually, an intelligent agent makes some computations during the
problems-solving that improves the efficiency and flexibility of difficult problems-solving.
But such computations, in case of simple problems, became unnecessary and time con-
suming. The establishment of the necessary intelligence for an agent is an important
aspect that must be analyzed at its development cycle.

For illustrative purposes, we consider as example the assessment of a system’s intelli-
gence based on the capacity to learn knowledge that allows new problems-solving. There
are different aspects that must be taken into consideration at the evaluation of the intel-
ligence:

• The learning time. The system can learn on-line or off-line;
• The quantity of learned knowledge. The system can learn more or less knowledge;
• The accuracy/quality of learned knowledge. The learned knowledge could be more
or less accurate;

• The usefulness of the learned knowledge. The learned knowledge could be more or
less useful. It could happen that the system will not use the learned knowledge;

• The consumption of computational resources during the learning. The learning could
require more or less computational resources (could be more or less time consuming);

• The consumption of computational resources during the problems-solving. The use
of the learned knowledge may require more or less computational resources. We may
consider for example an extremely intelligent system that uses numerous resources
for solving of a simple problem making useless computations.

Our consideration is that even if it is not possible to give a unified definition for the
intelligence of a system in general, for the evaluation of a system’s intelligence we consider
necessary the following aspects to be established:

1. existence of one or more properties based on which the system could be consid-
ered intelligent. The intelligence is manifested by evolution (the system evolve au-
tonomously), for example.

2. elaboration of a metric that allows the measurement of the intelligence (allows a
quantitative evaluation of quality). The metric must indicate the existence of the
intelligence. Sometimes it is better to indicate a degree of intelligence, like: no
intelligence, limited intelligence, normal intelligence, increased intelligence, extreme
intelligence.

A metric (general evaluator) that allows the measurement of the intelligence of a system
must take into consideration aspects, related with the:

• specific and type of the system. For example, the system is a: static software agent ;
mobile software agent ; mobile robotic agent ; static robotic agent.

• specific, number and complexity of the problems that must be solved by the system.
Usually a difficult problem solving requires more intelligence. Different types of
problems could require different type of intelligence for their solving.
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• the autonomy of the system in attaining the intelligence;
• the necessary cost and duration for attaining of intelligence;
• the measurable improvements that emerge based on the detained intelligence;
• measurable time in that the use of intelligence has as result improvements.

5. Conclusions. The main purpose of our research was a study of the intelligence that
emerges in an adaptive system composed from relatively simple cooperating agents. We
have proposed a multiagent system called ERMS capable of solving relatively large num-
bers of problems using genetic algorithms. Many real life problems-solving require the
use of genetic algorithms or combinations of them with other methods [1, 5, 6, 13, 20].
Moreover, in the papers [21, 22] is described a novel class of mobile software agents
called ICMAE (Intelligent Cooperative Mobile Agents with Evolutionary Problem Solving
Specialization), that uses problem-solving specializations based on evolutionary problem-
solving techniques.
The properties of the ERMS system that could be associated with the intelligence

consist in the adaptability of the system, manifested by its capacity to autonomously
reorganize its structure. The system is able to autonomously learn, using an evolution-
ary learning technique, how to adapt its structure. As a metric for the evaluation of
the systems’ intelligence we have considered the problems-solving time resulted from the
systems’ reorganization based on the specific/pattern of the problems sent for solving.
ERMS multiagent system represents an extension of the CCER multiagent system [23]

developed during our previous researches. The development presented in this paper and
the previously developed CCER multiagent system proves that computational system,
composed from interacting components (agents), that use methods based on evolutionary
computation for learning the required adaptability, exhibits at the level of the system an
emergent intelligent adaptive behavior.
Usually, the intelligence of a system gave advantages in some situations, but it could

have in some conditions disadvantages as well. We have established some general prin-
ciples that must guide the development of intelligent systems and estimation of their
intelligence. Usually a system’s intelligence increases its complexity which the system
must be able to handle autonomously inside. The complexity of a system must be hidden
from the external parties, to the humans and agents that request problems-solving from
the system.
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may lead to erroneous conclusions. A comprehensive review of the state-of-the-art
related to this subject was made. The main focus was on the most frequently
applied factor selection methods, namely Kaiser Criterion, Cattell's Scree test, and
Monte Carlo Parallel Analysis. We have highligthed the importance of the analysis
in some research, based on the research specificity, of the total cumulative variance
explained by the selected optimal number of extracted factors. It is necessary that
the extracted factors explain at least a minimum threshold of cumulative variance.
ExtrOptFact algorithm presents the steps that must be performed in EFA for the
selection of the optimal number of factors. For validation purposes, a case study
was presented, performed on data obtained in an experimental study that we made
on Brassica napus plant. Applying the ExtrOptFact algorithm for Principal Com-
ponent Analysis can be decided on the selection of three components that were
called Qualitative, Generative, and Vegetative, which explained 92% of the total
cumulative variance.
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1 | INTRODUCTION

Data mining techniques, like clustering, classification and others, are frequently used for analyzing large quantities of data in
many domains like agricultural sciences (Chinchuluun, Lee, Bhorania, & Pardalos, 2009; He, Ai, Jing, & Liu, 2016; Majum-
dar, Naraseeyappa, & Ankalaki, 2017; Mucherino, Papajorgji, & Pardalos, 2009) and plant sciences (Popescu, Noutsos, &
Popescu, 2016; Soltis, Nelson, & James, 2018). Frequently data mining tasks include different statistical approaches to ana-
lyze data. The books of Kantardzic (2002, 2011) make a comprehensive review of the state-of-the-art techniques and method-
ologies applied for analyzing very large quantities of data in high-dimensional data spaces, in order to obtain new information
that can be used in decision-making. Among others, different statistical approaches are analyzed, like Predictive Regression,
Analysis of Variance, Logistic Regression and some others applied in data mining. Data mining it is an approach that could
be appropriate even for knowledge discovery tasks. The book of Cios, Pedrycz, Swiniarski, and Kurgan (2007) covers a
comprehensive analysis of data mining regarded as a knowledge discovery approach.

In Su and Tsai (2011) and Rousseeuw and Hubert (2011) the problem of statistical outlier detection in the context of the
data mining is analyzed. Sometimes outlier values, which could be extremely low or extremely high, may influence the
obtained results and conclusions formulated based on those results. Based on this fact, outliers sometimes must be identified
and deleted. In order to give just a single simple motivation, it can be mentioned that an outlier in a data set can influence in a
high degree the value of the calculated average of those data set. In Arik, Iantovics, and Szilagyi (2017) a method called Out-
IntSys is proposed for the detection of systems with outlier intelligence (extremely low or extremely high) from a set of con-
sidered intelligent systems (ISs) specialized in solving a specific set of difficult problems.

In Bock (2002) some basic issues and approaches related to the task of classification are introduced. To this task, the
author gives three basic in-depth interpretations: discrimination, clustering, and classification. The author then presents the
essential steps of discrimination and clustering methods, outlining the necessity of preprocessing of data. In the performed
study, there were established links to different statistical approaches such as prediction and conceptual learning methods that
include among others the decision trees.

ISs are appropriate for the solving of many hard computational problems that involves data mining (Iakovidis, Maroulis, &
Karkanis, 2006; Iakovidis & Smailis, 2012). There is no universal view on what machine intelligence is and what intelligence
metric should measure. The problem of measuring machine intelligence is important based on the fact that the differentiation
in intelligence between ISs allows the choosing of the system with the highest intelligence able to solve difficult problems
(Iantovics, Emmert-Streib, & Arik, 2017; Iantovics, Rotar, & Niazi, 2018). Measuring machine intelligence frequently must
include some data mining methods. In (Iantovics, Dehmer, & Emmert-Streib, 2018) a novel intelligence metric called MetrInt-
Simil is proposed. MetrIntSimil is based on a complex analysis of some experimental intelligence evaluation data in order to
simultaneously measure the intelligence of a large number of ISs, compare their intelligence and, based on the obtained intelli-
gence measure, classify them in intelligence classes. Systems classified in the same class are able to solve difficult problems
with the same intelligence level.

Factor analysis (FA) (Prather et al., 1997; Tufféry, 2011; Wedel & Shi, 2010) is a group of methods that can be used for
data reduction and structure detection in the domain of data mining and knowledge discovery. FA has a large variety of appli-
cations such as successful job search for engineering college graduates (Kim, Sim, Seo, & Son, 2016) just to mention one of
the applications. In order to argue the popularity of FA, the paper (Wedel & Shi, 2010) analyzes its application in marketing
research, in perceptual mapping and as a latent structures detection method based on subjective judgments. Exploratory Factor
Analysis (EFA) is a type of FA, which is a statistical multivariate technique used to describe variance among a set of observed
variables/items. In EFA, the variables are correlated with different statistically significant strength of correlation. This could
lead to a potentially lower number of unobserved factors. The unobserved factors can be modeled as a linear combination of
the observed variables, and an additional error. The information identified about the interdependencies between observed vari-
ables can be used with two purposes: to reduce the set of variables or to classify them.

Many studies (Brown, 2009; Choi, Taylor, & Tibshirani, 2017; Costello & Osborne, 2005; Hayton, Allen, & Scarpello,
2004; Preacher, Zhang, Kim, & Mels, 2013; Song & Belin, 2008) discussed methods for choosing the optimal number of fac-
tors. Identification of an innapropriate number of factors may sometimes lead to erroneous conclusions. Some of the criteria
elaborated in time are appropriate in many situations and based on this reason they are very frequently applied. In this paper, a
comprehensive review of the state-of-the-art related to choosing the optimal number of factors was made. We bring forward
an algorithm called ExtrOptFact, for the selection of the optimal number of extracted factors. Concretely, ExtrOptFact pre-
sents the main steps of data analysis that should be performed in case of EFA. Related to the subject of establishing the num-
ber of factors, it proposes the application of the three most frequently utilized factor selection methods presented in the
literature named, Kaiser Criterion, Cattell's Scree test, and Monte Carlo Parallel Analysis. In the decision regarding the deter-
mination of the optimal number of extracted factors it indicates the analysis of the total cumulative variance explained by the
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extracted factors. This optimal number of extracted factors is sometimes suggested to have at least a minimal threshold value
that must be set based on the so-called research specificity established by the human specialist. In order to outline this affirma-
tion a specific experimental setup was performed. Based on our consideration in particular fields, like research in plants sci-
ences, plants are considered complex biological systems; an important aspect concerns the total cumulative variance
explained. The algorithm was applied on data collected as the outcome of experiments realized by us on autumn B. napus
plant. Both Principal Component Analysis (PCA) and Principal Factor Analysis (PFA) were performed, but the presented
experimental study mainly presents the PCA.

The paper is organized as follows: Section 2 presents an overview of EFA, then presents its applications in Subsection 2.1;
the Subsection 2.2 is dedicated to a survey on the methods for the selection of optimal number of factors in EFA; Section 3
presents the algorithm applied for the selection of optimal number of factors, including an experimental study for the valida-
tion of the algorithm; discussions follow in Section 4; Section 5 presents the conclusions of the paper.

2 | OVERVIEW OF EFA APPLIED IN DATA MINING

The term factor analysis was first introduced by Thurstone (Thurstone, 1931). FA includes Confirmatory Factor Analysis
(CFA) and EFA. CFA assumes that there is a firm idea about the number of encountered factors, and about which variables
most likely will load onto each factor. The purpose of an EFA is to explore the relationships among the variables. It does not
have an a priori fixed number of factors. It is based on the supposition that the researcher has a general idea about the intended
finding, but does not have yet settled a specific hypothesis. The study presented in this paper is focused only on EFA.

EFA has two principal directions: PCA and PFA. The two main application areas of exploratory factor analytic techniques
are: (a) to reduce the number of variables (data reduction) and (b) to detect structure in the relationships between variables.
The main purpose of structure detection consists of variables classification. In PCA it is assumed that all the variance in an
item/variable should be used in the statistical analysis. However, PCA is a method for data reduction. PFA takes into consider-
ation the variance in an item that it has in common with the other items. However, PFA is used to detect structure. Generally
speaking, PCA and PFA methods usually yield similar results related to the extracted numbers of factors (called components
in case of PCA).

2.1 | Applications of EFA in data mining

This section references some studies and researches that prove the large variety of real-life applications of EFA (Prather et al.,
1997; Wedel & Shi, 2010) in some data mining techniques that could include data reduction, structure detection, and knowl-
edge discovery. Presented applications include: agricultural sciences, plant sciences, environmental sciences, and health
sciences.

A developed self-assessment instrument called Hypomania Checklist-32 (HCL-32), presented in Angst et al. (2005), is
appropriate to identify bipolarity as well as unipolar depression in the human population. In An, Hong, and Kim (2011) the
factor structure of the Korean version of the HCL-32 for mood disorder patients is assessed. The study was performed by
using both EFA and CFA.

The clinical databases that accumulate large quantities of data about the patients' medical condition are analyzed in the
paper (Prather et al., 1997). New medical knowledge can be obtained by discovering relationships and patterns within these
data. In the performed study, some techniques of data mining and knowledge discovery in databases were used in order to
search for relationships in a large clinical database. In the study, there were used data detained for 3.902 obstetrical patients
which were evaluated for factors potentially contributing to preterm birth using EFA. As result, three factors were identified
for further exploration. The processes involved in mining a clinical database including data warehousing, and different data
analysis are described.

Many remote sensing projects that are oriented toward agriculture, like the one described in Bell and Baranoski (2004),
require ground-based measurements of plant reflectance and transmittance. Bell and Baranoski (2004) examine the application
of PCA in the storage and reconstruction of plant spectral data. A novel method called by the researchers piecewise principal
components analysis (PPCA) is proposed. PPCA takes into account the biological factors that affect the interaction of solar
radiation with plants. The reconstructions were performed at a root-mean-square error lower than 1%. The authors concluded
that PCA can reduce the dimensionality of plant spectral databases from the visible to the infrared regions of the light spec-
trum. The PPCA approach can further maximize the accuracy/cost ratio of the storage and reconstruction of plant spectral
reflectance and transmittance data.

Gouveia, Parreira, and Martins (2005) present an approach based on factor analysis for identifying the pathogenesis of
each autonomic manifestation in a cluster headache (CH). The authors analyzed the type of autonomic symptoms reported by
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157 CH patients. They identified three principal components, three different mechanisms underlying autonomic manifestations
in CH. The components were called: parasympathetic activation, sympathetic defect (miosis and ptosis), and parasympathetic-
mediated effect (nasal congestion, eyelid oedema, and forehead sweating).

Shreck, Getz, and Feenstra (2006) analyze the research question, does “certified organic agriculture” encompass a commit-
ment to “sustainability” that prioritizes social goals? It analyzes the relationship between social sustainability and organic agri-
culture by drawing attention to issues affecting farmworkers. It presents a case study that included a survey of organic farmers
in California, with the topic about the possibility of incorporation of social standards into organic certification criteria. The
researchers outline that lukewarm support for social certification within organic agriculture exists among certified organic
farmers in California. Organic agriculture necessarily fosters social and economic sustainability for most of the farmers
involved. Interviews realized with farmers demonstrate that there are individuals whose practices are atypical. Under some cir-
cumstances, an organic production system can be socially, environmentally, and economically sustainable.

Treiblmaier and Pinterits (2010) present a study that includes an EFA to generate and merge attributes of websites. As a
result different user groups are identified and classified based on their preferences.

Ji, Chen, Niu, Shang, and Dai (2011) present a novel method for transfer learning in a multiview correspondence perspec-
tive. The proposal is called Multiview Principal Component Analysis (MVPCA) approach. The presented experimental evalu-
ation proves that MVPCA can significantly reduce the cross-domain prediction error of a baseline nontransfer method.
MVPCA can further improve the performance of the state-of-the-art single-view method.

Some farmers use a lot of pesticides, with a high risk of pesticide poisoning in their cultivation process. This usually is
characteristic to those who aim to sell their products to the market. Wichai and Kessomboon (2015) study the hidden factors
associated with the farmer's behaviors by using pesticides safely. The research has identified eight factors such as “Economic
Reasons”; “Knowledge of Toxicity”; “Social reasons”; “Personal Protection”; “Confidence in residue-free cultivation”;
“Eagerness to learn”; and “Risk Perception and Practices”.

Fatema, Maznah, and Isa (2015) analyze the spatial variations of the water quality parameters of Merbok estuary. In the
performed research for the interpretation of the research results, there were used multivariate statistical techniques, PCA, and
cluster analysis. Three parameters were monitored at six sampling stations along the studied river stretch. FA was used for the
parameters of the surface and bottom water quality, yielding in the identification of four factors. The four factors explained
68.90% of the total variance of collected datasets.

Ro and Ha (2019) present a study intended to explore the consumers' expectations for novel autonomous cars in Korea.
The experimental data was collected from 1.506 potential autonomous car users. For the experimental data analysis, an explor-
atory and a confirmatory factor analysis was applied. Seven consumer expectations were identified; ethics, licensing, conve-
nience, safety, and cost were found to have a direct effect on attitude, whereas safety, convenience, and cost were found to
have a direct effect on intention.

2.2 | Survey on the optimal number of factors selection in EFA

In this section, there are presented some representative methods for establishment of the number of extracted factors in EFA.
Also, there are mentioned studies that present discussions on the opting between different methods in selecting the optimal
number of factors. In EFA, the first extracted factor retains most of the variance, later extracted factors retain less variance. In
the scientific literature, there is no unanimously accepted approach for choosing the latest factor with the smallest eigenvalue
to be selected.

The problem of choosing the optimal number of factors based on different criteria is discussed in many researchers
(Brown, 2009; Choi et al., 2017; Costello & Osborne, 2005; Hayton et al., 2004; Preacher et al., 2013; Song & Belin, 2008).
Mistakes at this stage may consist in extracting too many or too few factors. An inappropriate number of extracted factors
may have as result the obtaining of erroneous conclusions. Hayton et al. (2004) state three reasons why the decision related to
the establishment of the number of extracted factors is so important regarding the less-important aspect of selecting an extrac-
tion method or the factor rotation method. Costello and Osborne (2005) presented suggestions for choosing a Factor Extrac-
tion Method and establishment of the number of factors retained. The main goal of the study was to collect information that
will allow researchers to understand the various choices available through popular software packages, and to make decisions
about “best practices” in EFA. In particular, the study provides practical information on making decisions regarding factor
extraction, factor rotation, the number of factors to interpret, and sample size. Zwick and Velicer (1986) analyzed the relative
robustness of EFA regarding the selection of the extraction method and the factor rotation method.

In Song and Belin (2008) a performed study on the subject of establishing the number of extracted factors in case of
missing data is presented. It is discussed how to apply model selection techniques using Akaike's Information Criterion and
Bayesian Information Criterion to choose the optimal number of factors when some values are missing. In order to validate
the proposal, there is presented a simulation study. It is shown how to select the optimal number of factors for simulated data.
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The problem of establishment the optimal number of components in PCA is studied in Choi et al. (2017). With this pur-
pose there are proposed distribution-based methods with exact type 1 error controls for hypothesis testing. The confidence
intervals for signals in a noisy matrix with finite samples are constructed. The paper represents an extension of a result pre-
sented in Taylor, Loftus, and Tibshirani (2016). The proposed methods are compared with some other existing approaches.

The applicability of cross-validation as a solution to select the optimal number of components in PCA is discussed in Josse
and Husson (2012). It outlined the computational cost, the main disadvantage of this approach. In a regression analysis the
general cross-validation criterion provides appropriate approximations to leave-one-out cross-validation. It is based on the
relation between the prediction error and the residual sum of squares that are weighted by elements of a matrix called projec-
tion matrix. Such a relation is established in PCA using an original presentation of PCA with a projection matrix. It defined
two cross-validation approximation criteria, and some validations were performed based on simulations.

Minka (2001) proposed an approximate Bayesian model selection criterion for determining the optimal number of compo-
nents to be retained in PCA. Kazianka and Pilz (2009) presented a modified version of the selection criterion presented in the
study of Minka (2001). The modified criterion is compared with various other approaches using some specific simulations.
The criterion is used to find the optimal number of principal components in hyper-spectral skin cancer images.

The most frequently used methods for the establishment of the number of extracted factors are the Kaiser Criterion
(Kaiser, 1960) and the Scree test proposed by Cattell (1966). These methods/criteria are discussed in many studies and
researches (Browne, 1968; Cattell & Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Raîche, Walls, Magis, Rio-
pel, & Blais, 2013; Tucker, Koopman, & Linn, 1969).

Based on a comprehensive study of the scientific literature, Fabrigar, Wegener, MacCallum, and Strahan (1999) concluded
that the earliest criterion proposed by Kaiser (1960) is one of the most-known and most frequently utilized in practice. Accord-
ing to this criterion, only the factors that have eigenvalues greater than 1 are retained for interpretation. The motivation of this
fact consists in the explanation that an extracted factor with eigenvalue equal with 1 explains the variance equivalent with an
item/variable. Some researchers consider even more restrictive criteria, which limit some of the factors with an eigenvalue
greater than one. One of the main critics of Kaiser Criterion consists in the fact that sometimes it retains too many factors.

Scree test proposed by Cattell (1966) is also very frequently used. The Cattell's scree test is a nonnumerical solution to
determine the number of factors to retain. It consists of the visual exploration of a graphical representation of eigenvalues. The
eigenvalues are presented graphically in descending order and linked with a line. The created graph must be visually examined
by a human to determine the point at which the last significant drop or break takes place (see Figure 1). One of the main critics
of Cattell's Scree test consists of the fact that sometimes it retains too few factors.

Sometimes the application of the both methods, the Kaiser Criterion and the Cattell's Scree test, is recommended in the
determination of the number of extracted factors in order to take a more appropriate decision on the number of extracted fac-
tors. Figure 1 presents an example of a Scree test applied to a larger set of variables/items.

Raîche et al. (2013) consider that the graphical nature of the scree test does not accurately allow establishing the number
of factors to retain. With this purpose, numerical approaches are proposed. The first presented approach deals with the scree
part of the eigenvalues plot. The second presented approach focuses on the elbow part of this plot. In order to compare the
efficiency of these approaches with some other previously proposed methods, a simulation study is performed.

Parallel analysis (PA) proposed by Horn (1965) is a Monte Carlo simulation technique that aids researchers in determining
the number of factors to retain in EFA. Lautenschlager (1989) and Velicer, Eaton, and Fava (2000) present classical studies
related to the PA. In the study of Ledesma and Valero-Mora (2007) PA is considered one of the most recommended methods
to deal with the number-of-factors-to-retain problem. PA is included in few software packages and for this reason it is less
known by researchers than the Kaiser Criterion and the Scree test proposed by Cattell. “Monte Carlo PCA for Parallel
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FIGURE 1 Cattell's scree test. The plot of eigenvalues. X-axis represents the eigenvalue number. Y-axis represents eigenvalues
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Analysis” (Watkins, 2000; Watkins, 2006) and “ViSta-PARAN” (Ledesma & Valero-Mora, 2007) are examples of software
able to make PA. Watkins (2006) outlines that a main disadvantage of PA is the fact that it makes massive computations that
requires large computer resources.

3 | EXTROPTFACT ALGORITHM FOR ESTABLISHMENT OF OPTIMAL NUMBER OF
EXTRACTED FACTORS IN EFA

3.1 | Motivation of experimental researches on B. napus

Improving B. napus recorded outstanding achievements in recent years, both in terms of increasing the productive potential of
an impressive number of cultivars, but especially for increasing the quality of seed. The quality of seeds was deeply modified,
as raw material for food oil extraction. It is known that B. napus oil can be exploited not just for human consumption but also
to produce bio-fuel. The production of bio-fuel is very intensely studied (Hall, Matos, Silvestre, & Martin, 2011). Some recent
research have focused on finding solutions to stimulate and intensify the conduct of vegetation stages (autumn and spring).
Several growth regulators applied on seeds have been tested, in soil or young plants (in different climatic conditions), in terms
of aspect on plants just harvested, but also on the formation of production components, overproduction, content of different
fat acids content acids and even the behavior of seeds during storage, and some of them acted in certain concentrations stimu-
lating in all directions (Mondal, Fattah, Latif, & Chondhury, 1996).

3.2 | The performed experimental research on B. napus

A complex ecosystem is composed of organisms living in a given habitat. An ecosystem is composed of abiotic and biotic
components. The subsoil, water, air, climate, and rains are part of the abiotic components. The plants and animals constitute
the biotic components. In an ecosystem, there is a set of relationships between the biotic components that inhabit it and the
abiotic ones. All these characterize the ecosystem itself. Figure 2 presents a complex ecosystem, which includes a large-size
land of B. napus. There are some studies related to the biological intelligence of plants. Trewavas (2002, 2005) considered that
plants intelligence should be based on principles such as their ability to adjust their morphology, and phenotype accordingly
to ensure self-preservation and reproduction. As examples of notable capabilities of the plants that can be considered like some
kind of reasoning can be mentioned (Goh, Nam, & Park, 2003; Volkov, Carrell, Baldwin, & Markin, 2009): discriminating
negative and positive experiences and learning from past experiences, communication capability, accurate computing their cir-
cumstances. Yoneya and Takabayashi (2014) analyze the complex communication between plants from the same or different
species. By communicating, plants can form a highly complex system as a whole.

FIGURE 2 A large-size land of B. napus that forms a complex ecosystem
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In the experiments performed at Development Research Center for Cattle Growth (SCDCB) Mures, growth regulators
have been used for the winter B. napus, to stimulate the beginning of vegetation (mostly for the stem elongation), because,
based on climatic conditions the plants decreased the growing rhythm, and this phase has been extended. Mures County has a
continental climate characterized by warm dry summers and relatively cold winters.

Biometric measurements are required in a thorough research as they can correlate with the production (Zamfirescu, 1977).
In case of the B. napus, many authors (Kumar, Singh, Yadav, & Bikram, 1998; Ozer, Oral, & Dogru, 1999; Zamfirescu,
1977) consider the followings as the most important biometric indicators:

• plant height (height strains);
• the number of branches per plant (including fertile);
• the number capsule on plant;
• the number of seeds on capsule;
• siliques dimensions (characterized by length and diameter); and
• mass of plant seed.

Several authors found a positive correlation between the above components and production of seeds/ha (Kumar et al.,
1998; Ozer et al., 1999). These studies find that seed weight correlates most closely with seed production and seed oil
percentage.

Based on different studies performed in time we conclude that these production components, although sometimes differ
quite a lot from one variety to another, can be modified by the external environmental factors and the influence of various
technological factors.

Montvilas (1999) notes that plant density does not influence significantly their size and number of leaves. It very signifi-
cantly affects the number of the capsule on the plant that decreases with increasing of density with 18–44% from 2 to 4 kg/ha
seed. In the case of autumn, varieties interact significantly with density in this regard.

Kutchtova and Vašáak (1998) conclude that with the density, of particular importance is the era of sowing autumn
B. napus, together with the fertilizers “N,” “B,” and “Mo” in the formation and reduced generative organs (capsule,
seed). In the climatic conditions from Secuieni situated in the Neamt region, Berea (1995) concluded that planting
epochs, as well as climatic conditions of the year, can influence not only the length of the growing phases but also the
processes that contribute to harvest and which affect the number of capsules on the plant and the average number of seeds
per a capsule.

TABLE 1 Collected biometric indicators data

Number V1 V2 V3 V4 V5 Number V1 V2 V3 V4 V5

1 148.09 6.50 179.57 25.40 14.38 19 146.77 6.21 154.16 25.27 11.04

2 151.14 6.45 135.49 24.57 10.74 20 143.38 6.29 159.20 24.85 10.30

3 147.01 6.53 203.47 24.46 14.72 21 140.77 6.01 164.84 24.01 10.94

4 152.81 6.74 214.81 24.59 13.07 22 143.79 5.53 133.80 23.46 9.22

5 146.30 5.39 112.32 23.66 7.52 23 151.78 6.29 145.37 25.29 10.44

6 140.37 5.85 125.57 23.74 9.17 24 146.40 6.62 154.70 24.92 10.73

7 147.76 4.85 116.31 22.81 7.74 25 143.23 5.80 147.62 25.29 13.37

8 145.65 6.60 164.84 23.54 10.76 26 147.82 6.82 184.59 24.97 11.82

9 139.59 5.15 102.32 25.59 7.59 27 148.06 6.77 199.17 26.41 12.55

10 143.14 5.55 131.00 26.95 8.97 28 143.50 6.37 181.09 25.26 12.59

11 143.64 4.94 129.19 26.03 9.28 29 135.87 5.83 153.76 25.03 12.03

12 146.30 5.55 140.13 22.89 9.46 30 144.19 6.52 180.63 24.87 12.43

13 149.81 6.20 200.00 24.86 12.72 31 146.19 5.97 136.62 24.53 10.08

14 155.94 6.79 196.90 25.73 11.69 32 141.47 6.12 149.44 25.56 9.82

15 143.31 6.61 157.66 24.69 11.08 33 136.73 5.57 114.76 23.07 7.09

16 150.95 6.93 165.69 25.70 11.02 34 135.73 5.17 132.61 22.65 8.12

17 141.14 5.11 158.14 24.19 12.71 35 135.81 4.73 127.39 23.23 7.39

18 150.54 6.51 171.40 25.14 10.91 36 137.54 5.72 156.27 24.09 10.26
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3.3 | Materials and method

To establish the influence of some factors on autumn B. napus, biometric indicators were evaluated at SCDCB research center
from Mures county, more cultivar of autumn B. napus (called: Valesca, Digger, and Kardinal), sown at different densities
(100; 200; 300 bg/m2.) and administering different chemical fertilizers (called: N0P0K0, N60P60K0, N60P0K0,
N90P90K90). Table 1 presents the collected data during the experiments fulfilled on autumn B. napus that we used in the
experimental study for evaluation purposes. Figures 3 graphically represent the data from Table 1, which allows to humans to
make a visual analysis. To make easier the interpretation Figure 3 includes the red plotted linear trendline/linear regression
line. A more in-depth description of linear regression and plotting a linear regression line in Kenney and Keeping (1962) is
presented. The linear trendline was included just with the purpose to allow a better visual interpretation of data variability.
The notations used in Figure 2 and Table 1 are the following: V1 = waist measured in cm; V2 = plant ramification; V3 = plant
capsule; V4 = seeds capsule; V5 = weight of plant seeds measured in gr. unit of measure.

For experimental purposes, EFA was realized based on both PCA and PFA on the collected data. In the case of a particular
research, the researcher must choose between one of them based on the consideration on which of them is more appropriate to
the performed research (is necessary data reduction or structure detection). In Costello and Osborne (2005) the rationale for
choosing between PCA and PFA in a performed research that requests EFA is analyzed. In many statistical software packages,
PCA is considered as an implicit option.

In the following, just the results obtained during the performed PCA are presented, which has been considered as experi-
mental evaluation study of the algorithm on the used experimental data.

The presentation of PCA was chosen based on the motivation of data reduction. Data reduction could decrease the research
costs. PCA assumes that all the variance in an item/variable should be used in the statistical analysis. The presented algorithm
called Optimal Number of Extracted Factors in EFA Applied in Data Mining Algorithm (ExtrOptFact) can be used for the
establishment of the optimal number of extracted factors in EFA.

During the statistical analysis, for the data characterization, in the first steps, it was realized as indicated in Marusteri and
Bacarea (2010) and Savchenko and Belova (2015) a specific Descriptive Statistics to each of the studied variables. A Descrip-
tive Statistics is useful to describe some of the basic features of the data sets used in a study. Table 2 presents the results of the
performed descriptive statistics realized for all the studied variables.

In case of the data of each variable the following notations are used. N denotes the sample size, Min denotes the smallest
value, Max denotes the largest value, Range is calculated as the difference between Max and Min, Range = Max − Min, Mean
represents the average of the sample data. [LCI, UCI] denotes the confidence interval of the mean. The most appropriate confi-
dence level of the confidence interval was considered 95%, which is the most usual (Zar, 1984). As confidence levels other
values like 90% and 99% can be considered, but they are less frequently used. The establishment of the confidence interval of
the mean was necessary based on the fact that a sample was considered, not the whole population. It is impossible to have in
most of the situations data of the whole population. Calculated means of different data sets sampled from the whole population
have slightly different values. Standard Deviation (SD) (Bland & Altman, 1996) is a measure used to quantify the amount of
variation of a dataset. Var, Var = SD2 denotes the variance, which measures how far a set of numbers are spread out from their
average value. SE of a parameter is the SD of its sampling distribution. SEM denotes the Standard Error of the Mean,
SEM = SD/sqrt(N), where sqrt(N) denotes the square root, and Median represents the median of the experimental evaluation
results. Skewness (Joanes & Gill, 1998) is a measure of symmetry (lack of symmetry). Skewness indicates symmetric data set if
it looks the same to the left and right of the center point. Skew denotes the skewness. Kurtosis (Joanes & Gill, 1998) can be
defined as the measure of whether the data are light-tailed or heavy-tailed relative to a normal distribution. Kurt denotes the
kurtosis.

In case of the data of each variable the coefficient of variation (CV) was calculated, CV = (SD/Mean) × 100, in order to
allow the establishment of the data homogeneity–heterogeneity. Let us consider the following parameters CVa, CVb, and CVc.
A data set is homogeneous (hom), when CV < CVa; relative-heterogeneous (rel-hom), when CV2[CVa,CVb); relative

TABLE 2 Results of the descriptive statistics

Calculus V1 V2 V3 V4 V5

Mean/SEM 144.792/0.842 6.016/0.104 155.023/4.692 24.647/0.173 10.66/0.33

[LCI, UCI] [143.1/146.5] [5.81,6.23] [145.5, 165.6] [24.3,25] [9.9,11.33]

Median/N 144.92/36 6.16/36 154.43/36 24.86/36 10.75/36

SD/Variance 5.0509/25.511 0.6255/0.391 28.1539/792.64 1.0358/1.073 1.9772/3.909

Min/Max 135.73/155.94 4.73/6.93 102.32/214.81 22.65/26.95 7.09/14.72

CV/homogeneity 3.5/Hom 10.4/Hom 18.2/Rel-hom 4.2/Hom 18.6/Rel-hom

Range 20.21 2.2 112.49 4.3 7.63
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heterogeneous (rel-het), when CV2[CVb, CVc) and heterogeneous (het), when CV ≥ CVc. In most of the cases the recom-
mended values for the parameters mentioned above are, CVa = 10, CVb = 20, and CVc = 30.

Data cleaning frequently is necessary as a preprocessing step in data mining. Outlier (extreme, which could be very high
or very low) values (statistically different from those others) could significantly influence the obtained results and the formu-
lated conclusions based on those results. Sometimes outlier detection and elimination is necessary during data cleaning.

In the studied variables (each variable consisting in a data sample) the presence of outliers was analyzed using the Grubbs
test for outliers' detection (Barnett & Lewis, 1994). The Grubbs test is appropriate if the data normality is expected (a studied
data sample is expected to follow an approximately normal distribution). In statistics, if the estimated value is statistically sig-
nificantly higher or lower than the rest of the values, a two-tailed test (alternative name two-sided test) should be applied. In
other situations, a one-tailed test (alternative name one-sided test) should be applied. The one-tailed test is appropriate if the
estimated value may depart from the reference value in only one direction. In the performed case study the two-sided version of the
test was applied, with the significance level αGrubbs = 0.05. The significance level by 0.05 is recommended in most of the cases.
The applied Grubbs test for outliers' detection does not indicate the presence of outliers in case of any of the studied variables.

As an alternative to the Grubbs test, sometimes the Tietjen-Moore test (Tietjen & Moore, 1972) can be applied. The main
limitation of the Tietjen–Moore test consists in the fact that the number of outliers is necessary to be specified exactly at the
application of the test. This supposes that this number must be known in advance, which very rarely is possible in practical sit-
uations. Tietjen–Moore test similarly with the Grubbs test is based on the assumption of data normality. The Generalized
Extreme Studentized Deviate (ESD) test (Rosner, 1983) requires an upper bound on the prospective number of outliers. Its
use is recommended when there are one or more outliers but the exact number of outliers is not known in advance.

We consider the following indicator values of Skew and Kurt. A skewness value, Skew with |Skew| > 1.96, means that the
skewness is extremely deviated from zero. A kurtosis value Kurt with |Kurt| > 1.96, means that the kurtosis is extremely devi-
ated from zero.

The histogram was first introduced by Karl Pearson (Pearson, 1895b). We recommend the use of histograms as a graphical
technique for different kind of visual interpretations, expressive in case of larger data sets, less expressive in case of smaller data
sets. The humans and computing systems have different strengths and weakness comparatively with each other. Frequently easier
from the human side of view as compared to computing systems, is formulating some conclusions or taking decisions based on
visual interpretation of graphically represented data. Among others, a histogram is useful for visual showing the skewness and
kurtosis of a studied experimental evaluation data set and an orientative visual examination of data normality.

The most well-known goodness-of-fit tests of normality are Razali and Wah (2011) and Stephens (1974): One-Sample
Kolmogorov–Smirnov test (KS test), Shapiro–Wilk test (SW test), Lilliefors test (Lill test) (i.e., based on the KS test), and Anderson–
Darling test (AD test). KS test is one of the most frequently used. In Razali and Wah (2011) all the above-mentioned tests of normal-
ity are studied, and proved that the SW test is the most powerful, but it has some disadvantages as well. For testing the data normality
(sampling from a Gaussian population), the KS test (Chakravarti, Laha, & Roy, 1967) and the SW test (Razali & Wah, 2011) were
applied, with the αNorm = 0.05 significance level, results presented in Table 4. The significance level by 0.05 is considered the most
appropriate in many studies (Chakravarti et al., 1967; Razali & Wah, 2011; Stephens, 1974). Let us denote with Pnorm, the obtained
p-value of an applied normality test. If Pnorm > αNorm, then the normality assumption passed at the αNorm significance level, else-
where (Pnorm ≤ αNorm) the normality assumption failed at the αNorm significance level. Scatterplots are frequently used for visual
examinations (Friendly & Denis, 2005). The Quantile–Quantile plot (QQ Plot) is a scatterplot with some kind of specificity (Wilk &
Gnanadesikan, 1968). A QQ Plot is created by plotting two sets of quantiles against one another. QQ Plot is recommended for the
visual appreciation of normality. If both sets of quantiles came from the same distribution, the points form a line that is roughly
straight. The joint use of QQ plot with the SW test is suggested for accurate verification of the normality assumption.

The visual analysis of histograms, Figure 4a (for V1 variable), Figure 5a (for V2 variable), Figure 6a (for V3 variable),
Figure 7a (for V4 variable), Figure 8a (for V5 variable), indicates the V1, V2, V3, V4 and V5 normality and the fact that have
sense to make some further verifications of the normality using statistical goodness-of-fit tests and other representations appro-
priate to make a visual analysis. Table 3 presents the calculated skewness and kurtosis for V1, V2, V3, V4, and V5. All the
absolute value of calculated kurtosis and skewness for V1, V2, V3, V4, and V5 were lower than 1.96 (|Kurt| < 1.96, |Skew| <
1.96) that indicate that there is no extreme deviation from 0.

In case of the SW test as a secondary analysis there were visually analyzed the QQ Plots, Figure 4b (QQ Plot of V1),
Figure 5b (QQ Plot of V2), Figure 6b (QQ Plot of V3), Figure 7b (QQ Plot of V4), and Figure 8b (QQ Plot of V5). All the QQ
Plots visually indicate the passing of normality assumption. All the performed numerical (Table 4) and visual analyses of V1,
V2, V3, V4, and V5 normality indicate the passing of the normality assumption at the αNorm = 0.05 significance level. As an
observation it can be noticed that the Pnorm provided by the SW test is relatively close to 0.05. Based on the fact that SW test
is the most powerful normality test it can be considered that the normality assumption passed. This is enforced by the interpretation
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of the QQ plot associated to V2 variable that allows the formulation of the same conclusion related to the data normality (V2 passes
the normality assumption).

Important assumptions that should be verified for the applicability of EFA are the Kaiser–Meyer–Olkin Measure of Sam-
pling Adequacy (KMO) and Bartlett's Test of Sphericity (BTS). Kmo denotes the Kaiser-Meyer-Olkin Measure of Sampling
Adequacy that the test provides as result, Kmo2[0, 1]. The assumption of KMO test passed if Kmo ≥ 0.6. The assumption of
Bartlett's Test of Sphericity is passed if the obtained BtsSig as a test result is BtsSig < 0.05. Table 5 presents the results of
KMO and BTS tests applied on the studied experimental data.

As a next step, the Pearson Product Moment Correlation (Pearson, 1895; Stigler, 1989) was applied, developed by Karl
Pearson based on the idea of Francis Galton. Table 6 presents the obtained correlation matrix, between all the measured vari-
ables V1, V2, V3, V4, and V5. In order to maintain the generality, the method of mean substitution of missing data (in case of
our data there were no missing values) was applied. As it is well-known, a correlation coefficient denoted r indicates the corre-
lation strength between two variables, it should take values in the interval [−1, 1] (r2[−1, 1]).

It was applied a posttest, which proved that all the correlations are significant at the established αCor = 0.05 significance
level. The statistical significance of a correlation coefficient that is statistically different from zero was established by compar-
ing the obtained Pcor (p-value of the statistical significance test) with the αCor, and the decision is based on the Pcor < αCor.
A requirement for the Determinant of Correlation Matrix (DCM), calculated value denoted Dcm is that Dcm > 0.001. The
obtained Dcm of the correlation matrix was 0.054, which satisfy the criteria of Dcm > 0.001.

In the following, just the results of factor extraction by performing PCA are presented. For the establishment of the num-
ber of extracted components, first, we analyzed the most frequently used factor selection methods: Kaiser Criterion, Scree test
proposed by Cattell and PA.

Table 7 presents the eigenvalues of all the possible five components. The fact that the eigenvalue of the first component is
greater than the eigenvalue of the second component was expectable. As it is known, the first component extracts most of the
variance, following components extract less and less of the total variance. Based on the Kaiser Criterion (Fabrigar et al.,
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1999), if we take into account just components with eigenvalue greater or equal with 1, then just a single component can be
identified. There are different proposals that limit even the components with eigenvalue greater than 1.

Figure 9 presents the eigenvalues graphically in descending order and linked with a line. This is necessary for making the
Cattell Scree test of visual analysis. Based on the visual analysis, checking the point at which the last significant drop or break
takes place, it can be concluded the clear choosing of one component, the other two next components contributing in a smaller
degree to the value of total cumulative variance explained.

Also, the third often used test by PA was realized. In the case of PA, there were generated random eigenvalues.
Table 8 presents the eigenvalues obtained by PA using Monte Carlo method based on 100 replications. GRE denotes the
obtained eigenvalues, calculated as the average of the 100 samples of generated random eigenvalues. SDE denotes
the standard deviation. At the component selection must be selected just the components with an eigenvalue greater
than the generated random eigenvalues. As can be noticed the obtained results suggest the choosing of a single
component.

TABLE 3 Calculated skewness and kurtosis

Performed calculus V1 V2 V3 V4 V5

Kurt −0.384 −0.883 −0.566 −0.357 −0.544

|Kurt| > 1.96 No No No No No

Skew −0.065 −0.471 0.266 −0.152 −0.013

|Skew| > 1.96 No No No No No

TABLE 4 KS and SW tests results for V1, V2, V3, V4, and V5 data, at αNorm = 0.05 significance level

Performed calculus V1 V2 V3 V4 V5

KS test

KS stat/Pnorm 0.094/>0.1 0.117/>0.1 0.0799/>0.1 0.105/>0.1 0.083/>0.1

Normality assumption passed (Pnorm>αNorm) Yes Yes Yes Yes Yes

SW test

SW stat/Pnorm 0.976/0.609 0.942/0.057 0.978/0.665 0.976/0.619 0.975/0.577

Normality assumption passed (Pnorm>αNorm) Yes Yes Yes Yes Yes

TABLE 5 Results of the KMO and BTS tests

Kaiser-Meyer-Olkin measure of sampling adequacy

Kmo 0.756

Test assumption passed (Kmo ≥ 0.6) Yes

Bartlett's test of Sphercity

Approximate Chi-square 94.899

BtsSig ≈0

Test assumption passed (BtsSig < 0.05) Yes

TABLE 6 Correlation matrix

V1 V2 V3 V4 V5

V1 — 0.62 0.51 0.35 0.42

— Pcor≈0 Pcor≈0.002 Pcor≈0.04 Pcor≈0.01

V2 0.62 — 0.75 0.43 0.66

Pcor≈0 — Pcor≈0 Pcor≈0.009 Pcor≈0

V3 0.51 0.75 — 0.35 0.85

Pcor≈0.002 Pcor≈0 — Pcor≈0.037 Pcor≈0

V4 0.35 0.43 0.35 — 0.42

Pcor≈0.037 Pcor≈0.009 Pcor≈0.037 — Pcor≈0.01

V5 0.42 0.66 0.85 0.42 —

Pcor≈0.01 Pcor≈0 Pcor≈0 Pcor≈0.01 —
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In the following, the algorithm called Optimal Number of Extracted Factors in EFA Applied in Data Mining Algorithm
(ExtrOptFact) is described, for the establishment of the optimal number of factors that must be extracted. The particularities
of the approached research, that we will generically call in the following Research Specificity (RS), were: research on plants
that are complex biological life forms, which have a large variability that is specific to biological systems; a limited number of
studied variables. RS should be established by a human specialist (HS). HS is a specialist that detains in-depth knowledge
(has the necessary expertise) about the performed experimental research, research data and statistical data analysis. Usually,
these two types of expertise do not exist in a single human. However, HS is defined as the human (or humans) that detain both
expertises. In case of the obtained experimental B. napus data, HS denotes the specialist who detains the knowledge and
expertise related to the plant data (knowledge related to B. napus), and the statistical analysis. This allows the establishment of
the required total cumulative variance to be explained by the extracted components. This does not suppose mathematical cal-
culus, it is based on the knowledge about the specific of the data (as result of specialty knowledge/expertise, experience and
human intuition) and knowledge about statistical data analysis.

The value of input parameter of the algorithm in our experimental study are the N variables, |V| = N = 5; V = {V1, V2, V3,
V4, V5}. The output of the algorithm in our experimental study is M = 3 which denotes that by applying the algorithm three
factors (they are called factors just for illustrating the general idea, practically they are components based on the fact that a
PCA is performed) are selected (the first three components). The identified factors are denoted IDFactors = {Fact1, Fact2,
Fact3}; where Fact1, Fact2, and Fact3 are uncorrelated orthogonal factors, they are independent of each other. The selected
first three factors are marked in Table 7 with “*”. The eigenvalue of the first factor denoted Fact1 is by ≈3.198 that explain
≈63.967% of the total variance. The eigenvalue of the second factor denoted Fact2 is by ≈0.747 that explain ≈14.935% of the
total variance. The eigenvalue of the third factor denoted Fact3 is by ≈0.65 that explain ≈13% of the total variance. As can be
noticed analyzing the algorithm, there are admitted even factor with eigenvalue lower than 1 in some situations based on the
specificity of the performed research.

TABLE 7 Eigenvalues obtained by applying the principal components extraction

Order Component Eigenvalue % Total variance Cumulative eigenvalue Cumulative %

First extracted *Fact1 3.198 63.967 3.1984 63.967

Second extracted *Fact2 0.747 14.935 3.945 78.902

Third extracted *Fact3 0.65 13.007 4.595 91.909

Fourth extracted Fact4 0.281 5.619 4.876 97.528

Fifth extracted Fact5 0.124 2.472 5 100
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FIGURE 9 Plot of eigenvalues. Scree test proposed by Cattell

TABLE 8 Eigenvalues obtained by Monte Carlo parallel analysis

No. GRE SDE Eigenvalue Eigenvalue > GRE Indication of component selection

1 1.2209 0.0559 3.198 Yes Yes

2 1.0958 0.0367 0.747 No No

3 1.0024 0.0327 0.65 No No

4 0.8951 0.0428 0.281 No No

5 0.7858 0.0450 0.124 No No
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ExtrOptFact

Optimal Number of Extracted Factors in EFA Applied in Data Mining Algorithm

IN: V={V1, V2, …, Vn}; //Variables from that should be extracted the factors (or components). If is performed a PCA the correct name is “component”. If is
performed a PFA the correct name is “factor”. Sometimes in order to maintain the generality of explanation is used the name factor.

OUT: M; //The number of identified factors (or components).

Step 1: Preprocessing and data cleaning. Statistical characterization of V1, V2, …, Vn;

@Calculates for each variable the:

Mean, SEM, [LCI, UCI], Median, SD, Variance, Kurt, Skew, Min, Max, CV, Range;

@Verify the normality of each studied variable;

@Search for outliers and if identified, and considered necessary eliminate them;

Step 2: Verification of the applicability of EFA.

@Calculates Kmo; //Verification of the KMO test assumption.

@Calculates BtsSig; //Verification of the BTS test assumption.

@Calculates the Correlation Matrix;

@Calculates Dcm;

If ((Kmo ≥ 0.6)and(BtsSig < 0.05)and(Dcm > 0.001)) Then

@There are continued the following steps of the algorithm.

Else //The verification of the necessary assumptions for the application of EFA failed.

@The execution of the algorithm is interrupted. Print “EFA could not be performed”;
EndIf

Step 3: Establishment of the necessary type of EFA (PCA or PFA).

@Establishment by the HS the necessary EFA to be applied;

If (is necessary a method for data reduction) Then FactAnal:= “PCA”;
Else FactAnal:= “PFA”; //Is necessary a method for structure identification.

EndIf

Step 4: Performing the factor (or component) extraction.

@Apply the selected FactAnal method for extracting the factors (or components).

@Establishes an appropriate rotation strategy.

@Rotate the factors (or components) based on the established rotation strategy.

@Obtains the factor (or components) loadings and communalities.

Step 5: Establishment of the optimal number of factors (or components) to be extracted.

Step 5.1: Apply the Kaiser Criterion, Scree test and Parallel Analysis.

@Presents the result of Kaiser Criterion to HS;

@Makes the visual representation according to Scree test to be evaluated by HS;

@Performs and presents the results of Parallel Analysis to HS;

@HS analyzes the number of factors (or components) suggested to be extracted and based on that formulates some conclusions;

Step 5.2. Analysis of Research Specificity by HS.

@HS analyses the research specificity;

Step 5.3. Establishment of the optimal number of extracted factors.

@HS establishes the total cumulative variance that is considered to be explained based on RS and considering the results obtained at the steps Step 5.1 and

Step 5.2 establishes the optimal number M of extracted factors (or components).

EndExtrOptFact

The motivation of necessity of factor rotation is based on the fact that unrotated results coming from factor analysis are dif-
ficult to interpret. Based on a comprehensive analysis of literature (Cooley & Lohnes, 1971; Harman, 1976; Kim & Mueller,
1978a, 1978b; Lawley & Maxwell, 1971; Lindeman, Merenda, & Gold, 1980; Morrison, 1967; Mulaik, 1972; Stevens, 1986;
Wherry, 1984) it can be concluded that frequently used factor rotation strategies are the so-called: varimax raw, varimax nor-
malized, biquartimax raw, biquartimax normalized, quartimax raw, quartimax normalized, equamax raw, and equamax nor-
malized. In the technical note (Osborne, 2015) a comprehensive analysis of the significance of rotation is realized, explaining
why it is necessary when performing EFA. The utility and desirability of different rotation methods are discussed in detail.

The correlations between the variables and the factors are called factor loadings. Table 9 presents the factor loadings, prin-
cipal components of the extraction method, having as result three factors extracted. The processing for performing the rotation
converged in five iterations. It was chosen the application of the varimax normalized orthogonal rotation strategy. Varimax
normalized rotation is aimed at maximizing the variances of the squared normalized factor loadings across variables for each
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factor. This rotation strategy was proposed by Kaiser (Kaiser, 1958). The decision for this factor rotation was based on the fact
that the variables were not highly correlated with each other (Table 7 presents the correlation matrix).

In case of studying the strength of a correlation, for absolute values of r, a classification can be realized as follows:

• |r| 2 [0, 0.2), indicates a very weak correlation;
• |r| 2 [0.2, 0.4), indicates a weak correlation;
• |r| 2 [0.4, 0.6), indicates a moderate correlation;
• |r| 2 [0.6, 0.8), indicates a strong correlation; and
• |r| 2 [0.8, 1], indicates a very strong correlation.

Table 10 presents the same rotated component matrix as Table 9 but with the small coefficients (≤0.3) suppressed and var-
iables ordered. Table 11 presents the calculated communalities. Communalities are the proportion of each variable's variance
that can be explained by the factors.

4 | DISCUSSION

PCA was performed in the experimental study, and we have studied the problem of optimal number of components to be
extracted. We used in some places the name factor in the description from above just to maintain the generality of the descrip-
tion. All the methods/criteria for the establishment of the optimal number of extracted components: Kaiser Criterion, Scree
test, and Parallel Analysis suggest the choice of one component. Using the ExtrOptFact algorithm the first three components
were selected. As can be noticed, the second component has the eigenvalue by 0.747; considered by some researchers not rele-
vant (see the Kaiser Criterion; eigenvalue 0.747 < 1) and the third component has the eigenvalue by 0.65 (0.65 < 1). We call
the first component Qualitative Component, which explains 63.967% of the total cumulative variance. We call the second
component Generative Component, which explains 14.935% of the total variance. We call the third component Vegetative
Component, which explains 13% of the total variance. The names of the components were established using human specialty
knowledge about agricultural sciences, plants sciences, and plant biology. The total cumulative variance explained by the first

TABLE 10 Rotated component matrix, with small coefficients suppressed

Fact1 Fact3 Fact2

V5 0.917

V3 0.910

V2 0.667 0.557

V1 0.938

V4 0.964

TABLE 11 Calculated communalities

Variable Initial Extraction

V1 1 0.955

V2 1 0.805

V3 1 0.927

V4 1 0.998

V5 1 0.910

TABLE 9 Rotated component matrix. Factor loadings

Variable Fact1 Fact2 Fact3

V1 0.231 0.150 0.938a

V2 0.667a 0.214 0.557

V3 0.910a 0.108 0.294

V4 0.203 0.964a 0.165

V5 0.917a 0.227 0.132

Expl.Var 2.213 1.061 1.321

Prp.Totl 0.4426 0.2123 0.2642

a Marked loadings are >0.55.
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three components is by 92%. The obtained result by naming of the three components allows the validation of the result
obtained by applying the ExtrOptFact algorithm on the studied variables V1, V2, V3, V4, and V5.

As an additional explanation, it can be mentioned that frequently in decisions taken related to number of extracted factors
the Kaiser Criterion is considered the first applied, followed by the Cattell Scree test. Figure 1 presents an example of a Cattell
Scree test applied to 10 variables performing an EFA. By analyzing the visual representation a decision can be made on the
identification of three factors. Kaiser Criterion applied alone suggests two factors (the third factor has an eigenvalue lower that
1). By combining Cattell's Scree test result with the Kaiser Criterion result can be decided on two factors.

The ExtrOptFact algorithm includes at a decision point the consideration of Research Specificity that is established by the
Human Specialist. This makes the algorithm a hybrid one. Different complex decisions are more accurate if they are based on some
kind of hybridization. In the presented algorithm the hybridization is based on data processing (Kaiser Criterion, Parallel Analysis),
visual analysis (Cattell Scree test) by humans and human intervention in different points of decision. In the performed experimental
study we considered that in our particular research topic approached the 63.97% variance explained is not enough and it would be
necessary at least 80–90% explanation of the total cumulative variance. This consideration indicated the necessity of choosing the
third component, this yielding as cumulative variance explained by ≈92%. We would like to outline the necessity in a research to
have a very good understanding of the research to be performed and the specificity of the obtained research data in case of EFA.

5 | CONCLUSIONS

Data mining techniques are frequently applied to analyzing large quantities of data in different domains like the agricultural
sciences and plants sciences. Some of the data mining techniques should be combined with statistical data analysis. EFA is
one of such frequently applied methods. Data mining techniques that require EFA include PCA and PFA. EFA is important in
different types of researches that require data reduction or structure identification (frequently necessary in classification). The
number of factors to retain is very important in EFA. The survey presented in this paper is mainly focused on some of the
most utilized methods, namely Kaiser Criterion, Cattell Scree test, and Parallel Analysis, for the determination of the optimal
number of factors in EFA. Each of them has may raise different critics in the specialized literature, such as the selection of an
inappropriate number of factors (too few or too many) or the requirement of large computing time. The combination of these
methods frequently allows a good choice of the optimal number of factors. In order to choose the optimal number of factors
we consider that sometimes, based on the specificity of the research, the total cumulative variance explained by the extracted
factors must be considered, which in some case must necessarily have at least a minimal admitted value.

ACKNOWLEDGMENTS

This work has been funded by the CHIST-ERA programme supported by the Future and Emerging Technologies (FET)
programme of the European Union through the ERA-NET funding scheme under the grant agreements, title SOON - Social
Network of Machines.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

RELATED WIREs ARTICLES

Multivariate methods
Multiple factor analysis: principal component analysis for multitable and multiblock data sets
STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling
Anomaly detection by robust statistics
Statistical data mining

REFERENCES

An, D., Hong, K. S., & Kim, J. H. (2011). Exploratory factor analysis and confirmatory factor analysis of the Korean version of hypomania Checklist-32. Psychiatry
Investigation, 8(4), 334–339.

Angst, J., Adlofsson, R., Benazzi, F., Gamma, A., Hantouche, E., Meyer, T. D., … Scott, J. (2005). The HCL-32: Towards a self-assessment tool for hypomanic symp-
toms in outpatients. Journal of Affective Disorders, 88, 217–233.

Arik, S., Iantovics, L. B., & Szilagyi, S. M. (2017). OutIntSys - A novel method for the detection of the most intelligent cooperative multiagent systems. In D. Liu, S. Xie, Y. Li,
D. Zhao, & E. S. El-Alfy (Eds.), Neural information processing. ICONIP 2017 Lecture Notes in Computer Science (Vol. 10637, pp. 31–40). Cham, Switzerland: Springer.

18 of 20 IANTOVICS ET AL.

https://doi.org/10.1002/wics.185
https://doi.org/10.1002/wics.1246
https://doi.org/10.1002/wics.198
https://doi.org/10.1002/widm.1236
https://doi.org/10.1002/wics.53


Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). Chichester, UK: Wiley.
Bell, I. E., & Baranoski, G. V. G. (2004). Reducing the dimensionality of plant spectral databases. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 570–576.
Berea, N. (1995). Current status of research regarding to the duration of phenophases and production of autumn rape depending on the variety grown and sowing era.

(Ph.D. dissertation). University of Agricultural Sciences, Iaşi, Romania.
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Abstract
Intelligent agent-based systems are applied for many real-life difficult problem-solving tasks in domains like transport and
healthcare. In the case of many classes of real-life difficult problems, it is important to make an efficient selection of the
computing systems that are able to solve the problems very intelligently. The selection of the appropriate computing systems
should be based on an intelligence metric that is able to measure the systems intelligence for real-life problem solving. In this
paper, we propose a novel universal metric called MeasApplInt able to measure and compare the real-life problem solving
machine intelligence of cooperative multiagent systems (CMASs). Based on their measured intelligence levels, two studied
CMASs can be classified to the same or to different classes of intelligence.MeasApplInt is compared with a recent state-of-
the-art metric calledMetrIntPair. The comparison was based on the same principle of difficult problem-solving intelligence
and the same pairwise/matched problem-solving intelligence evaluations. Our analysis shows that the main advantage of
MeasApplInt versus the compared metric, is its robustness. For evaluation purposes, we performed an illustrative case study
considering two CMASs composed of simple reactive agents providing problem-solving intelligence at the systems’ level.
The two CMASs have been designed for solving an NP-hard problem with many applications in the standard, modified and
generalized formulation. The conclusion of the case study, using theMeasApplIntmetric, is that the studied CMASs have the
same real-life problems solving intelligence level. An additional experimental evaluation of the proposed metric is attached
as an Appendix.

Keywords Applied machine intelligence · Computational-hard real-life problem · Cooperative multiagent system ·
Intelligent system · Machine intelligence · Machine intelligence measure · Real-life problem-solving intelligence

1 Introduction

Intelligent agent-based systems (IBASs) consisting of intel-
ligent agents (IAs) and intelligent cooperative multiagent
systems (ICMASs) were applied to a large variety of real-life
problem solving. In [93], a cooperative multiagent system
(CMAS) is presented that is composed of very simple coop-
erating mobile agents able to perform intelligently network
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administration tasks, similar to a human network adminis-
trator. The paper [46] presents a research on CMAS com-
posed of simple efficiently and flexibly cooperating agents,
having at the system’s level an increased problem-solving
intelligence. There are many other studies that present sys-
tems composed of simple cooperating agents, and show
that these systems have an emergently increased real-life
problem-solving intelligence. This is somehow similar to
many simple cooperating life-forms on earth where the
intelligence emerges at the cooperating systems’ level.
Colonies/swarms of biological [48, 75] ants, termites, bugs,
and bees are illustrative examples in this sense.

When intelligence estimation is based just on some
intuitive principles, as there are presented in many studies,
the conclusions are not convincing. Very few metrics
were designed worldwide for measuring the machine’s
intelligence. Each of these metrics is based on some kind
of principles of measuring the machine intelligence. The
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application of different intelligence approaches do not
allow the direct comparison of the metrics. There is no
standardization or even a relatively general view on what
an intelligence metric should measure. There is an actual
need to design universal metrics for effective measuring of
CMASs intelligence. We assume that the artificial systems
intelligence should be based on the principle of real-
life problem-solving ability. Such an evaluation measure
must allow the comparison of CMASs based on real-life
problem-solving intelligence. In our study, we concluded
that intelligent systems have significant variability in
the problem-solving intelligence. This is similar to the
variability in the intelligence of the humans.

In recent research performed in 2018 [45] the MetrInt-
Pair metric, was presented, which was applied to measure
the real-life problem-solving machine intelligence of two
selected CMASs. The paper also makes an accurate com-
parison of the intelligence level of the studied CMASs, and
at the same time verifies if they can be included in the
same class of intelligence (solve problems with the same
intelligence). The intelligence comparison of two CMASs
is based on some kind of pairwise/matched problem-solving
intelligence evaluations.

In this paper, we propose a novel metric called Robust
Metric for Comparison of two Cooperative Multiagent Sys-
tems Real-Life Problem-Solving Intelligence (MeasApplInt)
that is able to make a simultaneous measuring and com-
parison of two studied CMASs intelligence. Based on the
problem solving intelligence comparison result the two
studied CMASs can be classified in the same class of intel-
ligence or in different intelligence classes. The method
takes into account also the variability in the intelligence
of the compared CMASs. MeasApplInt represents an adap-
tation of the MetrIntPair metric providing a more robust
behavior. MeasApplInt is based on the same principle of
pairwise (matched) intelligence evaluations and compari-
son as MetrIntPair metric. The novelty of MeasApplInt
is based on different performed processings and analyses.
This topic is treated in the discussion section. In the case
of each compared CMAS, a so-called Central Intelligence
Tendency Indicator (CentrIntTen) is calculated, which quan-
tifies its central intelligence tendency. MeasApplInt is also
able to verify (by incorporating some calculus in this sense)
the indirect correlation in the problem-solving intelligence
behavior of the studied CMASs. We will present this sub-
ject in the discussions section. MeasApplInt is a universal
metric of measuring the machine intelligence. Based on this
fact its application does not depend on special aspects, like
the studied CMASs architecture. It can be applied even for
the comparison of two individual agents’ problem solving
intelligence.

For proving the effectiveness of the proposed MeasAp-
plInt metric and for validation purposes two CMASs were

studied in Section 4. These two CMASs operated as a Rank-
Based Ant System [12, 67] andMin-Max Ant System [67, 83,
84], specialized in solving an NP-hard problem - the Trav-
elling Salesman Problem (TSP) [21–23]. The most frequent
applications of the TSP include the transport, logistics, plan-
ning, and the manufacture of microchips. Additionally, it
was performed an experimental comparison of the MetrInt-
Pair and MeasApplInt metrics. Another experimental study
where intelligence of the studied systems is different is
attached as Supplementary Material to this paper.

The upcoming part of the paper is organized as follows:
Section 2 analyzes the real-life problem-solving machine
intelligence, In Section 2.1 some intelligent systems able to
solve different real-life problems are presented, Section 2.2
presents a survey on some significant metrics that are
proposed for measuring artificial systems intelligence; In
Section 3, our proposedMeasApplIntmetric for intelligence
measuring, comparison, and classification is presented;
For validation and comparison purposes, experimental
studies are presented in Section 4; Section 5 discusses
the proposed metric; In Section 6 the conclusions of the
research are presented; The Supplementary Material presents
a performed additional experimental study.

2 Real-life problem-solvingmachine
intelligence

2.1 Intelligent systems applied for real-life problems
solving

Intelligent agent-based systems were applied to a large
variety of real-life problems solving. Yager [92] proposed
an intelligent agent specialized to help in the determination
of the appropriateness of displaying a given advertisement
to a visitor of a webpage on the WWW. A four
layers fuzzy multiagent system able to perform stock
price prediction is proposed by Zarandi et al. [90].
Arif et al. [2] proposed assistant agents specialized in
e-learning able to help the users to collect different
important materials, to examine, and distribute customized
knowledge. An agent-based prototype simulation system
of public health emergency management is proposed by
Song et al. [81]. Iqbal et al. [47] analyzed the necessity
and advantages of the use of intelligent agents for different
problems that appear in healthcare. The applicability of
intelligent agents in E-commerce is analyzed by Kafali and
Yolum [50]. Chliaoutakis and Chalkiadakis [15] studied
different research questions about early human societies
using agent-based simulation. An agent-based model to
study compliance with safety regulations of an airline
ground service organization is proposed by Sharpanskykh
and Haest [78]. A recent overview of autonomous intelligent
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vehicle systems that frequently are agent-based by Tokody
et al. [85] is realized. Chouhan and Niyogi [18] proposed a
domain independent solution based on multiagent systems
called MAPJA, for solving planning problems. The problem
of scheduling patients in a hospital using multiagent systems
by Hsieh [43] is studied. Coelho et al. [16] present an
agent-based simulator named MASE-BDI for studying
environmental land change.

The papers cited in this section, and many others pub-
lished in the recent scientific literature, proves the ability of
IBASs to solve difficult problems. This motivated the neces-
sity of measuring the machine intelligence. The large variety
of IBASs by different architecture intuitively illustrates
the difficulty of measuring the machine intelligence, com-
paring the systems based on their intelligence and classi-
fying them in intelligence classes.

2.2 Measuring real-life problem-solving intelligence
of agent-based systems

In the previous section, there were presented some
representative intelligent agent-based systems specialized
in different real-life problems solving. In the presented
studies and researches the IBASs are considered intelligent
based on different principles. Is not enough to consider a
system specialized in real-life problems solving intelligent
based just on some principles, without giving a quantitative
measure to its intelligence. In this section, we will
analyze some metrics proposed for measuring the machine
intelligence.

Alan Turing in 1950 [86] gave an early, very interesting
definition to the machine intelligence. Turing considered
a computing system as intelligent if a human assessor
could not decide the nature of the system (being human
or otherwise) based on questions asked from a hidden
room. Some interesting frequently cited human-computing
systems competitions claim the design of such adapted
metrics. There are well-known, the competitions between
the chess-playing machine named Deep Blue and the chess
grandmaster Garry Kasparov [61] and the competitions
between the IBM Watson computing system and human
experts [36] in the classic game show with a twist named
Jeopardy.

In [73] the necessity of creating standard metrics
for intelligent systems is outlined. The presented study
was realized with the purpose to analyze how precisely
intelligent systems are defined and how to measure and
compare the capabilities that intelligent systems should
provide.

A novel introductory methodology to test the agent’s
intelligence is presented in [37]. The proposal is based
on the calculus of a so-called general intelligence factor
and the well-known theory of multiple human intelligences.

According to the proposal, an agent uses some principles of
the theory of evolution, detaining some stored knowledge. A
set of tests assess the multiple intelligences of the agents, for
analyzing their behavior in a larger variety of situations. The
proposal is intended for both quantitative and qualitative
evaluations of intelligence.

In [89] two methods to measure the intelligence of a
machine are proposed. In the first step of the research
methodology, there were considered to be systems that are
called intelligent in the literature. From these systems, there
were extracted four common constructs, each of which
characterized by several variables. Using this there were
suggested two models, represented as entities in three-
dimensional construct space. In order to calculate the
machine intelligence quotient (MIQ), the Sugeno fuzzy
integral and the Choquet fuzzy integral are used. For
validation purpose, two applications have been studied for
the models using the two fuzzy integrals and are presented
some comparative comments.

The idea of elaboration of intelligence test able to be
applied to humans and computing systems is analyzed in
different studies. In [74] a computer program tested on
some standard human IQ tests is presented. According to the
authors [74], the computer program surpassed the average
human intelligence score by 100 on some tests.

In some studies, the agents’ intelligence is considered
based on the difficulty/complexity of problems that they are
able to solve. In [1] the agent-based systems intelligence
considering the ability to compare alternatives based on
their complexity is defined. In the performed research, it
is considered an agent-based distributed sensor network
system. For measuring the intelligence of the system, a
specific novel approach is proposed. The proposal was
tested by comparing the intelligence quotient in different
agent-based scenarios.

In [42] a novel metric for intelligence measuring is
proposed. It is based on the theory of the hierarchy of sets
of increasingly difficult environments. Hibbard considers
an agent’s intelligence proportional to the ordinal of the
most difficult set of environments that may pass. The
measurement tests were implemented with infinite state
machine models of computing.

The variety of intelligent swarm systems applied to
different problems solving is very wide. The collective
intelligence of a particle swarm system according to a
novel Maturity Model is assessed in [88]. The proposed
model is based on the Maturity Model of Command and
Control operational space and on the model of Collaborating
Software. The main aim of the study was to obtain a more
thorough explanation of how the intelligent behavior of the
particle swarm emerges.

In [41] the possibility to design metrics for measuring
the capabilities of the cognitive systems is studied. The
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conclusion of the study performed by the authors is
that a promising approach for measuring the intelligence
requires the design of metrics inspired by the human
psychometrics that are designed to measure the human
cognitive capabilities.

Some studies introduce the notion of universal intelli-
gence test to humans, animals and machines in an integrated
way. A comprehensive analysis of the possibility to design
universal intelligence tests is performed in [33]. In [40]
the idea of a general test called universal anytime intelli-
gence test is studied. In the mentioned study it is considered
that such a test must be universal as it is able to mea-
sure the intelligence quotient, even if it is very low or
very high. The authors also consider that the test should be
able to measure the intelligence quotient of any biological
or artificial system. The proposal is based on the C-tests
and compression-enhanced Turing tests designed in the late
1990s. In their study, the researchers performed an analy-
sis of different tests by highlighting their limitations. They
introduce some novel ideas, considering them as necessary
for the development of a “universal intelligence test”.

In [7] an intelligent system is considered, which can
successfully solve difficult problems for humans, has some
kind of human-level intelligence. In the paper, difficult
problems are studied for the humans that could be used as
benchmark problems for intelligent systems.

An interesting study related to the intelligence of
cooperative agent coalitions is presented in [17]. The
authors propose a novel metric that they consider universal,
appropriate to empirically measure the intelligence of
different classes of agents. There are presented different
illustrative situations where a cooperative multiagent system
can be more intelligent than others. There are discussed
some common factors that influence the level of collective
intelligence.

In [44] a novel metric called MetrIntMeas for measuring
the intelligence of a cooperative swarm system is proposed.
MetrIntMeas is able also to make a classification of
the studied cooperative swarm system, by verifying if it
belongs to the class of cooperative swarm systems with
a specific reference machine intelligence. There is also
given a definition to the evolution in the intelligence of the
cooperative swarm systems.

The identification of the systems that have outstanding
(significantly high) or silly (significantly low) intelligence
from a set of intelligent systems is analyzed in [3]. For the
identification of such systems, there is proposed a specific
method called OutIntSys. OutIntSys can be applied in
choosing the systems with outstanding or silly intelligence
from a set of intelligent systems able to solve difficult
problems.

We made a comprehensive review of the scientific lit-
erature focused on the subject of measuring the machine

intelligence. This section surveyed some of the research
papers that were considered relevant. In some studies,
different analysis and evaluations of the systems’ intelli-
gence are treated. Metrics that are described in the scientific
literature, are designed for making different kinds of mea-
surements of the systems’ intelligence.

As a general conclusion, based also on the analogy
with the nature/biology, we formulate that there are
many studies [19] that treat different aspects of human
intelligence but, none of them given a precise definition
what the human intelligence is. An interesting fact is
that, even in this situation, it is possible to measure the
human intelligence (to obtain a quantitative evaluation
of the intelligence). There are many designed tests for
measuring the human Intelligence Quotient (IQ), see for
instance [60]. We consider that a human IQ measure
cannot be considered as an absolute indicator but it has
practical applicability. For instance, it has some kind of
contribution to the job performance along with the detained
specialty knowledge specific to the job and sometimes
to the detained commonsense knowledge (things that are
expected for many peoples to know). Intelligence could be
helpful even in more efficient solving of usual every day
tasks. Similarly to the humans’ intelligence, we consider
that the intelligence of the artificial systems cannot be
uniquely defined, but even in this context, metrics/tests
can be designed for measuring machine intelligence and
these metrics if are based on principles of problem-solving
ability have applicative utility. Obtained problem solving
intelligence measurements could be taken into consideration
in decisions related to the choosing of the most intelligent
system(s) able to solve specific type(s) of problem(s).

An intelligent agent-based system for solving a specific
type of problem could use different architectures. This
motivates the necessity to use universal intelligence metrics
for measuring machine intelligence. Many designed metrics
are based on different principles and they are dependent
on some aspects like the IBASs architecture. Based on the
limited universality their effective practical utilization is
limited. In our approach, we consider the notion universality
consisting of the ability to measure machine intelligence no
matter what architecture the IBASs has. We do not intend
to design a metric that is able to measure artificial and
biological intelligence in the same time. This consideration
is based on the fact that artificial and natural/biological
intelligence are different. The biological intelligence is
the result of a very long evolution of life on earth [70].
According to some studies [70], the earth formed about
4.5 billion years ago and some evidence suggests that life
emerged prior to 3.7 billion years.

During our studies, we identified that the only important
property of the intelligence metrics [3, 44, 45, 62] is
to provide a numerical intelligence measure and also to
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compare and classify systems based on their intelligence.
We considered general processing steps for a metric, as
follows: first step, making of some kind of problem-
solving intelligence evaluations; second step, performing of
some calculus and analyses based on the problem-solving
intelligence evaluation measure obtained at the previous
step. This procedure allows establishing the intelligence
level of the considered system. This general approach in
two steps could offer as principal advantages to a metric. In
this sense, in [45] an accurate metric calledMetrIntPair that
is able to analyze simultaneously two systems’ problems
solving intelligence is proposed. An improvement of this
metric can be made by increasing its robustness. We
consider that this robustness property is necessary in case of
many IBASs that are specialized in solving difficult real-life
problems.

3MeasApplInt metric for measuring
the real-life problem solving intelligence

In this section, a novel universal metric for a robust
comparison of the real-life problem-solving intelligence of
two studied CMASs is proposed. The metric is described
as an algorithm called in the following Robust Metric for
Comparison of two Cooperative Multiagent Systems Real-
Life Problem-Solving Intelligence (MeasApplInt).

3.1 Type of intelligence, intelligence indicator,
central intelligence tendency, intelligence
component, and human evaluator

In the following, we determine the intelligence aspects of
CMASs.

A type of intelligence of a studied CMAS indicates a
specific way on that it is able to solve one or more type(s)
of problem(s) based on a specific problem-solving point of
view appreciated by a Human Evaluator (HE).

An intelligence indicator measure obtained at an
experimental problem-solving intelligence evaluation gives
a quantitative value to the problem-solving intelligence by
the considered type.

The Central Intelligence Tendency of a studied CMAS
represents a quantitative measure given to the studied
system’s intelligence using a calculus that is based on
more experimental difficult problem-solving intelligence
evaluation results. It must be mentioned that the Central
Intelligence Tendency is not an absolute indicator. Its
effective obtained numerical value could be slightly
different at different sets of experimental problem-solving
intelligence evaluations performed. This phenomenon is
explained by the variability of machine intelligence of the
studied system.

A studied CMAS could have one or more types of prob-
lem-solving intelligence. A type of machine intelligence
that does not require a formal definition to be given and
is not dependent on the architecture of the intelligent
system. The human evaluator must identify based on the
type(s) of problem(s) that the studied intelligent system
should solve the type of problem-solving intelligence
by interest.

There are different studies, researches and even patents
related to specialists that act as human evaluator. In [71]
a methodology for analysis and classification of different
kind of human error is proposed. The methodology treats the
possible causes and factors that contribute to the occurrence
of different errors. The US Patent [6] is focused on a
general approach to some methods for presentation and
evaluation of constructed responses assessed by human
evaluators. In [58], investigates the contribution of human
evaluator in image enhancement tasks performed in order to
make visual improvements of images. The study presented
in the paper [49] investigates the perceived value of two
sentiment analysis tools developed to understand Finnish
language, in contrast to human evaluators. A research
in [13] added the human contributor to the mechanized
system of evaluation in an e-Learning environment. In the
paper [80], the central role of human evaluators is analyzed
in the applied automatic semantic technologies.

The studies briefly discussed in the previous paragraph
present the important role that could play a human evaluator
in different studies and problem-solving based on the
detained knowledge and experience. In our research, theHE
is a specialist who must detain knowledge related to the
studied intelligent systems and the type(s) of problems that
they must solve. A decision process of the HE practically
includes the identification of type of the intelligence by
interest and how to measure it. The corresponding principle
to a type of intelligence is practically a verbal explanation
associated to it. In case of systems with one or a very
low number of types of intelligence, the deciding process
of HE could be simple. In the case of extremely complex
systems with higher number of types of intelligences, the
decision processes could be highly complex, and HE could
be represented by a team of specialists.

The decision related to the identification of types of
intelligence that an intelligent system may possess can
be improved if it is made automatically. The automatic
identification of the types of intelligences that a system
could detain represents our next research direction. It is
proposed the study of the design of a mathematical model
for the automatic identification of the types of intelligences
that an intelligent system possesses.

An illustrative scenario to the previously introduced notions
TSP applications solve transportation problems that can be
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defined as the movement of humans and goods from one
location to another. In order to illustrate the previously
introduced notions, in the following, a scenario is presented.
It is considered an intelligent next-generation agent-based
flying drone. The flying drone specialization consists in the
delivery at a journey of a set of products to one or more
destinations (at home to the clients) and to return to the
starting point. Each destination must be visited a single
time, and it includes the delivery of one or more products.
HE can simply consider the machine intelligence based on
the intelligence in the performing of an efficient low cost
of delivery. According to this setting, the lower the cost
the higher is machine intelligence. The cost could include
among others, the fuel consumption necessary to deliver the
set of the products by interest to one or more clients. The
fuel consumption is dependent on aspects like the traveling
distance, the weight of the products that must be transported
on different distances and the performed departures and
landings. The cost may depend also on the aspects like the
meteorological conditions (there is a storm in a specific
region and the drone must avoid that region for example).

If necessary, in case of a very complex CMAS based on
its specificity, the intelligence indicator can be calculated
as the weighted sum of some intelligence components
measure, which gives a quantitative indication to different
aspects of the system’s intelligence.

Let us denote with Indr a type of intelligence indicator
chosen for a CMAS, Indr = wg1 × msr,1 + wg2 ×
msr,2 + . . . + wgp × msr,p; wg1 + wg2 + . . ... + wgp =
1.Indr is calculated as the weighted sum of p types of
intelligence components measure, components denoted with
1, 2,. . . , p. msr,1, msr,2, . . . , msr,p represent the considered
intelligence components’ measures obtained at a problem-
solving intelligence’s evaluation, and wg1, wg2,. . . ,wgp

represent the components weights.
In the case of the previously presented flying drone

scenario, if the intelligence is seen in a complex way,
then, an intelligence component established by the human
specialist could for instance:

1. Offer a quantitative measure of the problem-solving
intelligence based on the efficiency of delivery. This
could include aspects, like the total time of delivery, the
fuel consumption necessary for the delivery, satisfac-
tion of the clients related to the quality of delivery;

2. Offer a quantitative measure to the cooperation
efficiency with other flying drones. For example,
cooperation performed in order to avoid the collisions
during the flight with other similar flying drones;

3. Offer a quantitative measure to the capacity to avoid
different types of flying entities that are unable to
make an intelligible communication in order of their
avoidance, like the birds, for example.

In the case of the intelligence indicator’s calculus as
multiple intelligence components measure, sometimes a
transformation of the components must be performed
before making the performed calculus of the experimental
problem-solving intelligence measure.

With explanatory purposes, in the following we present
some scenarios In order to illustrate the idea of weight of an
intelligence component, we consider the scenario when the
flying drone intelligence at each flight is calculated using
two intelligence components measure established by the
HE, based on the intelligence of delivery.

Scenario 1 At a problem-solving (delivery of one or
more product to one or more clients at home) a mark
between 1 and 10 is given by a human specialist
in intelligent systems. This mark (the first intelligent
component measure) is considered to have the weight by
0.6. The second mark (the second intelligence component
measure) is established as the average of the marks
with values between 1 and 10 given by all the clients
who receive products at that specific delivery with the
considered weight by 0.4. For example, the problem of
delivery of some products to three clients is considered.
Each client gives a mark and the average of the values
is calculated. The weight of this average is marked with
0.4. The rationale for choosing these weights by HE
could be based on the fact that the human specialist
has a deep knowledge about intelligent systems, and
the clients are usual peoples that give the mark mostly
based on the satisfaction of the delivery by the drone,
but most of them do not have any knowledge about
intelligent systems. The rationale of the fact that the
weight of the evaluation of clients is close to the weight
of the evaluation of the specialist could be based on
the aspect that clients’ satisfaction of delivery is very
important for the company that detains such drones. The
final calculated intelligence indicator value based on the
values of intelligence components will be a number in the
interval [1, 10], with 1 signifying the no intelligence and
10 signifying highest possible intelligence.

Scenario 2 We consider the scenario when HE evaluates
the following two intelligence components, the benefit of
the delivery expressed in money with the weight 0.7 and
a mark between 1 and 10 given to the intelligence of the
drone by a human specialist in intelligent systems, having
the weight 0.3. In this case, in order to calculate the value
of intelligence indicator, a mathematical transformation
of the value of benefit into a numerical value in interval
[1, 10] must be applied. The resulting intelligence of
the flying drone at a problem solving, the obtained
intelligence indicator value will be a number in the
interval [1, 10]. With 1 signifying no intelligence and 10
signifying the highest possible intelligence.
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3.2 Description of the proposedMeasApplInt metric

In the following, we consider two studied CMASs
denoted as COP i1 and COP i2 that solve the same
type/class of real-life problems denoted ClassP . The
intelligence testing of COP i1 and COP i2 is considered
on the same set of test problems denoted Dif P r =
{Dif P r1, Dif P r2, . . . , Dif P rk}. The obtained results of
the intelligence indicator for the problems solving are
denoted as IndSet1 = {Ind1n1, Ind1n2, . . ., Ind1nk}
and IndSet2 = {Ind2n1, Ind2n2,. . .,Ind2nk}. |IndSet1|
and |IndSet2| represent the cardinality (sample size) of
IndSet1 and IndSet2, where |IndSet1| = |IndSet2| = k.

Table 1 shows the organization of the results of problem-
solving experimental intelligence evaluation for the studied
CMASs. Table 1 presents the obtained intelligence indi-
cators’ sets for both CMASs. Ind1n1, Ind1n2. . .Ind1nk

- represents the problem-solving intelligence evaluation
results of COP i1; where Ind1n1 represents the mea-
sured intelligence in the Dif P r1 solving, . . .Ind1nk rep-
resents the measured intelligence in the Dif P rk solving.
Ind2n1, Ind2n2, . . ., Ind2nk - represents the problem-
solving intelligence evaluation results of the COP i2; where
Ind2n1 represents the measured intelligence in the Dif P r1
solving,. . .Ind2nk represents the measured intelligence in
the Dif P rk solving.

In the following, the Central Intelligence Tendency
Indicator (CentrIntTen) of a CMAS, is defined as its
indicator of the central intelligence tendency in real-life
problem-solving. The intelligence of the biological life
forms, including the humans, has variability in intelligence
that is manifested as oscillations in intelligence. We
consider that, similarly to the biological intelligence,
the CMASs have variability in intelligence. CentrInt1
and CentrInt2 denote the CentrIntTens of COPi1 and
COPi2. We considered the most appropriate CentrIntTens
of COPi1 and COPi2 the medians of IndSet1 and
IndSet2. CentrInt1 =Median(Ind1n1, Ind1n2, . . . , Ind1nk),

CentrInt2 =Median(Ind2n1, Ind2n2, . . . , Ind2nk). The
decision for choosing the median as the indicator of the
central intelligence tendency was based on the required
robustness, from the measured intelligence indicator data
property point of view. There is no restriction to the
assumption that IndSet1 and IndSet2 should be normally
distributed (sampled from a Gaussian population) and they
can be even heterogeneous.

TheMeasApplIntmetric presented in the form of an algo-
rithm called Robust CMASs Intelligence Measuring, Com-
parison and Classification compares the central intelligence
tendency of COP i1 and COP i2 on the testing problem set
DifPr. Figure 1 contains the graphical representation of the
specific processing and analyzing steps performed by the
metric.MeasApplInt checks if the intelligence of the studied
CMASs are equal (there is no statistical difference between
them) or different from the statistical point of view. Further,
we consider Null Hypothesis denoted as H0ie, the statement
that COP i1 and COP i2 intelligence are equal from the
statistical point of view (more precisely statistical equality
of the CentrIntTens). We denote with H1ie the Alternative
Hypothesis, a hypothesis that indicates that the intelligence
of COP i1 and COP i2 is different from the statistical point
of view.

MeasApplInt uses as input IndSet1 = {Ind1n1,
Ind1n2, . . ..., Ind1nk} and IndSet2 = {Ind2n1,

Ind2n2, . . .. . ., Ind2nk} that represents the COP i1 and
COP i2 intelligence indicators measure obtained during
the studied CMASs evaluation in solving of the test prob-
lems set denoted DifPr. The cardinality of the problems
set is given by |DifPr|=k. The choosing of the appropri-
ate problems set for the intelligence measurements is the
responsibility of HE based on the type of intelligence that
HE would like to detect.

The first step of the MeasApplInt algorithm indicates
a statistical characterization of the intelligence indicators
data by computing the values for the most important sta-
tistical indicators [54, 63]: Mean; Standard Error of Mean

Table 1 Pairwise intelligence
evaluation results of the studied
COP i1 and COP i2

PrId∧ Problem∗ IndSet #
1 IndSet ##

2 Pairs&

1 Dif P r1 Ind1n1 Ind2n1 Ind1n1−Ind2n1

2 Dif P r2 Ind1n2 Ind2n2 In1n2 − Ind2n2

. . . . . . . . . . . . . . .

K Dif P rk Ind1nk Ind2nk Ind1nk−Ind2nk

CentrInt1 CentrInt2

∧denotes the problem identifier; ∗denotes the problem used in the problem-solving intelligence
evaluation, called independent variable; #denotes the measured problem-solving intelligence of
COP i1, called dependent variable; ## denotes the measured problem-solving intelligence of COP i2,
called dependent variable; &denotes the formed pairs, with #dependent variable and ##dependent
variable
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(SEM); Median; Standard Deviation (SD); Variance; Low-
est value (Min); Highest value (Max); Confidence level
of the mean (CL); [LowerCI, UpperCI] the lower and
higher bound of the confidence interval of the mean and
Coefficient of Variation (CV). As CL of the confidence
interval of the mean in most of the cases, we propose the
choosing of 95%. The value of CV, CV=100x(SD/Mean)
is appropriate for analyzing the homogeneity-heterogeneity
of a sample intelligence data set. CV indicates the vari-
ability in intelligence in the problem-solving. We con-
sidered the data classification based on the variability
as follows [34, 56]: CV∈[0,10) indicates homogeneous
data (hom.); CV∈[10,20) indicates relatively homogeneous
data (rel-hom.); CV∈[20,30) indicates relatively hetero-
geneous data (rel-het.); CV≥30 indicates heterogeneous
data (het.).

One of the advantages of the proposed metric consists in
the fact that is robust, therefore, it is appropriate in the case
of sample data that does not follow the Gaussian distribution
even if it is not homogenous or relative-homogeneous. Step
2 of the algorithm, indicates that MeasApplInt is applied
even in case of Gaussian data, but in this situation, it is
reported toHE that it is possible (there is a chance) to design
a more accurate metric.

We can formulate this affirmation as a general principle
in Artificial Intelligence, as follows: if some additional
properties are known about a specific problem then, there
is some chance to design a more efficient problem-solving
method/ algorithm than the methods/ algorithms designed
without exploring those additional properties. As a very
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simple explanatory example (it is not related to intelligent
systems, but it is illustrative to the principle that we
formulated), we mention the search for a number in a large
set of numbers. If there is no information about the property
of the set of numbers, then the sequential search method
can be applied. Elsewhere, for example, if the numbers are
ordered, based on this important additional property, it can
be considered that there is a chance to be designed a more
appropriate search method, which takes into consideration
the ordering property of the numbers. It is well-known that
the binary search method is suitable for this situation and it
explores very well the ordering property of the numbers.

If the data sets IndSet1 and IndSet2 are normally
distributed, then there are computed the two secondary
intelligence indicators SecCentrInt1 and SecCentrInt2
as the means of IndSet1 and IndSet2. In this case, they
can be considered as indicators of the secondary central
intelligence tendency.

For the verification of the data’s normality, we propose
the One-sample Kolmogorov-Smirnov test (K-S test) [14]
and the Shapiro-Wilk test (S-W test) [77]. We propose to use
the normality tests at the significance level, αNorm=0.05.
The Quantile-Quantile plot (Q-Q plot) is a scatterplot
appropriate for the visual appreciation of the normality. A
Q-Q plot is created by plotting two sets of quantiles, one
against another. If both sets of quantiles came from the same
distribution, the points form a line that is roughly straight.
We suggest the joint use of Q-Q plot with the Shapiro-Wilk
test for obtaining of a more accurate conclusion related to
the normality (approximated normality, usually there is no
perfect normality in case of real-life data).

Step 3 of the MeasApplInt algorithm suggests the
verification of pairing (matching) effectiveness, using
a novel algorithm called Effective Pairing Verification,
abbreviated as II-EffPair. According to the Effective
Pairing Verification algorithm, if IndSet1 and IndSet2 are
normally distributed, the correlation indicator (coefficient)
denoted R is calculated as the Pearson Correlation
Coefficient [38, 65, 82], elsewhere it is computed the
Spearman Correlation Coefficient [9, 59]. This decision is
based on the fact that Spearman Correlation Coefficient is
more robust than the Pearson Correlation Coefficient, and,
considering this circumstance, it is more appropriate in the
nonparametric case.

If the pairing (matching) is effective it can be decided for
the application of the Wilcoxon test (Wilcoxon signed rank
test for two paired samples) that takes into consideration the
pairing property. The robust Wilcoxon nonparametric test,
was proposed by Frank Wilcoxon [68, 69, 79, 87]. If the
pairing (matching) assumption is violated, then is indicated
the application of the Mann-Whitney test [35, 55] instead
of Wilcoxon’s test. The nonparametric Mann-Whitney test
is similar to the Wilcoxon test from the robustness point of

view. The disadvantage of theMann-Whitney test compared
to Wilcoxon’s test consists in the fact that it does not
explore the pairing property of intelligence data, as this
requires a slightly increased sample size. It is suggested the
application of the two-tailed test instead of the one-tailed
test in case of any chosen test, Wilcoxon test or Mann-
Whitney test. αClass denotes the significance level of the
applied statistical test. αClass represents the probability to
make a type I error, to reject H0ie (Null Hypothesis) when
it is true. As value of αClass, αClass=0.05 is suggested
that we consider it as the most appropriate in most of the
situations.

By applying the MeasApplInt metric, if PvalCorr >

αClass, then it can be decided that H0ie is accepted.
There is no evidence for the H0ie rejection. This may be
formulated as follows, even there is a numerical differ-
ence between the computed central intelligence indicators
CentrInt1 of COP i1 and CentrInt2 of COP i2, there
is no statistical difference between them, and therefore,
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DifPr

IndSet1 Step1. Analysis of the
intelligence indicators data.

Step2.Verification of the 
data normality assumption.

Step3.Verification of the 
pairing effectiveness.

Step4.Comparison and 
classification of the studied 
CMASs intelligence.

Step5. Decision regarding 
the intelligence comparison 
and classification.

IndSet2

Fig. 1 The flowchart of data processing in theMeasApplInt algorithm

the studied CMASs have the same problem-solving intel-
ligence. The numerical difference between CentrInt1 and
CentrInt2 is caused by the variability in the intelligence
of the CMASs. From classifications point of view, both
CMASs, COP i1 and COP i2 can be classified in the same
class of intelligence.

If H1ie is accepted, then it can be concluded that
the intelligence of COP i1 and COP i2 is different.
The numerical difference between the CentrInt1 and
CentrInt2 CentrIntTens is statistically significant and it is
not the consequence of the variability. From classification
point of view, COP i1 and COP i2 cannot be classified in
the same class of intelligence. If CentrInt1 < CentrInt2,
then it can be concluded that COP i1 is less intelligent
than COP i2. If CentrInt1 > CentrInt2 then it can be
concluded that COP i1 is more intelligent than COP i2.

4 Case study for comparison of two CMASs
problem-solving intelligence

4.1 Real-life applications of the Travelling Salesman
Problem

Travelling Salesman Problem (TSP) can be defined as
follows: given a map that includes K cities, a salesman
starting from a city, wish to visit each city a single time
and then return to home. He/she would like that the total
traveling cost (distance, traveling time etc.) to be the
smallest possible. TSP remains one of the most challenging

problems in operational research based on the fact that it
is an NP-hard problem (non-deterministic polynomial-time
hard) [27, 52]. NP-hardness is the defining property of a
class of problems that are, at least as hard as the hardest
problems inNP. In the case of a class of an NP-hard problem
it is unlikely a polynomial-time algorithm for solving will
be ever found. One of the earliest formal definitions of TSP
describes it as an integer linear program [29].

Definition 1 Given the complete graphG = (N, E)where
the set of vertices is N = {1, 2, . . . , n}, and the positive
matrix C = (cij )1≤i,j≤n

where cij is the cost associated to
the edge (i j), TSP defines the integer variables (xij )1≤i,j≤n

which correspond to a generic path in G

xij =
{
1 if the edge (i j) is used

0 otherwise
(1)

and minimizes the objective function (2) subject to
constraints (3), (4) and (5).

n∑
i,j=1

xij × cij (2)

n∑
i=1

xij = 1 ∀ 1 ≤ j ≤ n (3)

n∑
j=1

xij = 1 ∀ 1 ≤ i ≤ n (4)

∑
i,j∈S

xij ≤ |S| − 1 ∀ S ⊂ N, 2 ≤ |S| ≤ n − 1 (5)

The constraints (3, 4) make sure that only two edges in a
selected path are incident to any vertex. The constraint (5) ex-
cludes circuits only using vertices from a proper subset of N .

TSP can be classified in Symmetric TSP (sTSP) and
Asymmetric TSP (aTSP). sTSP [39, 64] is the problem of
finding the shortest Hamiltonian cycle/tour in a weighted
undirected graph that does not have loops or multiple
edges. The distance between two cities is the same
in each opposite direction. Many practical combinatorial
optimization problems in production management and
scheduling can be formulated as equivalent to the sTSP.

The aTSP [29] characterizes the situation when edges
may not exist in both directions or the distances might be
different; a directed graph is formed. One-way streets are
examples of situations when the symmetry property is not
satisfied.

The Travelling Purchaser Problem (TPP) and the Vehicle
Routing Problem (VRP) are both NP-hard problems that
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represent generalizations of TSP. The TPP can be enounced
as follows “Given a list of marketplaces, the cost of
travelling between different marketplaces, and a list of
available products together with the price of each such
product at each marketplace, the task is to find, for a given
list of articles, the route with the minimum combined cost
of purchases and traveling” [8]. The VRP is enounced as
follows “What is the optimal set of routes for a fleet of
vehicles to traverse in order to deliver to a given set of
customers?” [28].

4.2 Cooperativemultiagent systems that mimic the
biological ants

Even very simple creatures like the natural ants, bees,
African termite species and some others, which does not
have intelligence at the individual level could be considered
intelligent at the level of the colony/swarm. There are many
studies that prove the emergent real-life problem-solving
intelligence of colonies/swarms composed of simple living
creatures able to intelligently solve complex tasks [11, 48].

Beni and Wang [5] introduced the notion of Swarm
Intelligence (SI) in the context of robotic systems called
Cellular Robotic Systems. The use of swarms of simple
cooperative mobile robots may have advantages like
scalability (the swarm can be extended with new members,
inefficient members can be eliminated), robustness (the
swarm can solve a problem even if some of its members fail,
does not have enough fuel for operation, for example) and
problem solving efficiency (distributed cooperative problem
solving). Cooperative swarms of ground and aerial vehicles
have diverse applications like convoy protection, [76] and
moving target localization and tracking [51].

Marco Dorigo [20, 31] firstly proposed the problem-
solving based on simple computing agents that mimic the
behavior of natural ants in the way they search for the
food. There are many applications of the algorithms that
mimic the biological ants like, optimization of clustering

models [72], emergency management using geographic
information systems [27], solving permutation scheduling
problems [57] and optimization of the constrained mechan-
ical design [66].

In the following, the general operation of a cooperative
multiagent system is briefly presented that operates as an
Ant System (AS). Initially, each agent (artificial ant) is
placed on some randomly chosen node (city). An agent k
currently at node i chooses to move to node j by applying a
probabilistic transition rule (6).

pk
ij (t) =

{ [τij (t)]α× [ηij ]β∑
l∈Jk(i)[τil (t)]α× [ηil ]β if j ∈ Jk(i)

0 otherwise
(6)

After each agent completes its tour, the pheromone
amount on each path will be adjusted according to (7), (8)
and (9).

τij (t + 1) = (1 − ρ) × τij (t) + Δτij (t) (7)

Δτij (t) =
k=m∑
k=1

Δτk
ij (t) (8)

Δτk
ij (t) =

{
Q
Lk

if (i,j) ∈ tour perf ormed by agent k

0 otherwise

(9)

ρ, α and β that are used in (6)–(9) are adjustable
parameters. α is called the power of the pheromone. β is
called the power of the distance weight. The role of α and
β is to control the relative weights of the heuristic visibility
and the pheromone trail. α and β establish the necessary
trade-off between edge length and pheromone intensity. Q
is an arbitrary constant. In many studies the value of Q=1
is considered as the most appropriate. di,k represents the
distance between the nodes denoted i and k. The variables
ηik stand for the heuristic visibility of the edge (i,k).

Fig. 2 Graphical representation of Intelligence Indicators for COP i1 and COP i2
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ηik = 1/di,k . ρ represents the evaporation factor. The value
of ρ must be in the interval (0, 1). The number of agents that
forms the AS is denoted by m. Li denotes the length of the
tour performed by the agent i.

For the validation of the proposed metric, a case study
was conducted in order to prove its effectiveness. We
considered the comparison of two cooperative multiagent
systems intelligence denoted COP i1 and COP i2, formed
by mobile agents, that solves the sTSP.

COP i1 operated as a Rank-Based Ant System (RBAS).
In the RBAS [12, 67], modified version of the AS the
obtained solutions are ranked according to their length.
Further, the amount of deposited pheromones is weighted
for each solution. However, solutions with shorter paths
deposit more pheromones than the solutions with longer
paths.

COP i2 operated as a Min-Max Ant System (MMAS).
A MMAS [67, 83] is a variant of the AS. A MMAS
give dynamically evolving bounds on the pheromone trail
intensities, this is done in such a way that the pheromone
intensity on all the paths is always within a specified limit of
the path with the greatest pheromone intensity. MMAS uses
lower and upper pheromone bounds to ensure that all of the
pheromone intensities are between the two bounds.

In the experimental setup, there were considered maps
composed of nr=30 randomly placed cities. The parame-
ters of both COP i1 and COP i2 were considered: repeti-
tions=1200; α=1.738; β=2.085 and ρ=0.163. |DifPr|=41.
Dif P r = {Dif P r1, Dif P r2,...,Dif P r41}. The intelli-
gence indicator for both CMASs was considered as the
obtained best-to-date travel value from the beginning of the
problem-solving process. Figure 2 contains the graphical
representation of the variability of intelligence indicators
data IndSet1 and IndSet2. Table 2 presents the obtained
IndSet1 and IndSet2 intelligence evaluation’s results for
COP i1 and COP i2.

Table 3 presents the results of the performed statistical
characterization as indicated in the first step of the
MeasApplInt algorithm. CL was set to 95%. The CV values
of IndSet1 and IndSet2 indicate a moderate relative
homogeneity (with values between 10 and 12).

Table 4 presents the results of the performed normality
test of IndSet1 and IndSet2. The data normality was
verified with the One-sample Kolmogorov-Smirnov test and
Shapiro-Wilk test. We choose to apply the two normality
tests at the significance level, αNorm=0.05. Figures 3 and 4
presents the Normal Q-Q Plot of IndSet1 and IndSet2,
for the visual analysis of the normality, which must be
used jointly for the accurate normality estimation with the
Shapiro-Wilk test. PvalNorm denotes the P-value of the
normality test. PvalNorm > αNorm should be interpreted
as the normality is verified, elsewhere the normality
assumption failed. The obtained test results presented in

Table 2 Intelligence evaluation results of the COP i1 and COP i2

IndSet1 IndSet2

Ind 1n 1[3.752]*1 Ind 2n 1[4.159]#1

Ind 1n 2[5.442]#3 Ind 2n 2[4.717]*3

Ind 1n 3[6.106] Ind 2n 3[6.579]

Ind 1n 4[4.513]*2 Ind 2n 4[6.189]#2

Ind 1n 5[7.084] Ind 2n 5[6.831]

Ind 1n 6[6.012] Ind 2n 6[5.707]

Ind 1n 7[6.931] Ind 2n 7[6.104]

Ind 1n 8[6.068] Ind 2n 8[5.636]

Ind 1n 9[6.548] Ind 2n 9[6.584]

Ind 1n 10[6.076] Ind 2n 10[6.032]

Ind 1n 11[6.345] Ind 2n 11[6.924]

Ind 1n 12[6.73] Ind 2n 12[6.184]

Ind 1n 13[6.595] Ind 2n 13[6.231]

Ind 1n 14[7.028] Ind 2n 14[7.448]

Ind 1n 15[6.393] Ind 2n 15[7.014]

Ind 1n 16[7.263] Ind 2n 16[7.076]

Ind 1n 17[6.28] Ind 2n 17[6.817]

Ind 1n 18[7.096] Ind 2n 18[6.787]

Ind 1n 19[6.212] Ind 2n 19[7.301]

Ind 1n 20[6.373] Ind 2n 20[7.344]

Ind 1n 21[7.672] Ind 2n 21[7.267]

Ind 1n 22[7.888] Ind 2n 22[6.968]

Ind 1n 23[6.259] Ind 2n 23[6.182]

Ind 1n 24[6.606] Ind 2n 24[6.535]

Ind 1n 25[6.39] Ind 2n 25[6.683]

Ind 1n 26[6.579] Ind 2n 26[6.744]

Ind 1n 27[6.828] Ind 2n 27[6.328]

Ind 1n 28[6.932] Ind 2n 28[7.064]

Ind 1n 29[6.364] Ind 2n 29[6.961]

Ind 1n 30[6.488] Ind 2n 30[7.119]

Ind 1n 31[6.553] Ind 2n 31[5.985]

Ind 1n 32[6.632] Ind 2n 32[6.657]

Ind 1n 33[7.61] Ind 2n 33[7.245]

Ind 1n 34[6.922] Ind 2n 34[6.566]

Ind 1n 35[7.215] Ind 2n 35[6.787]

Ind 1n 36[6.935] Ind 2n 36[7.15]

Ind 1n 37[7.196] Ind 2n 37[6.908]

Ind 1n 38[5.75] Ind 2n 38[7.19]

Ind 1n 39[6.78] Ind 2n 39[6.292]

Ind 1n 40[7.122] Ind 2n 40[6.555]

Ind 1n 41[6.926] Ind 2n 41[7.232]

Table 4, and the visual representation of Figs. 3 and 4, shows
that none of the intelligence indicator data sets IndSet1 and
IndSet2 passed the normality assumption.

Step 3 of the MeasApplInt algorithm indicates the
verification of the effective pairing (matching) property of
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Table 3 Results obtained by
analyzing IndSet1 and
IndSet2

Type of analysis IndSet1 IndSet2

Mean/SEM/[LowerCI,UpperCI] 6.5486/0.1179/[6.310, 6.787] 6.5874/0.1054/[6.374, 6.8]

SD/Variance 0.7549/0.5699 0.675/0.4456

CV/Interpretation 11.53/rel-hom. 10.2/rel-hom.

Sample size 41 41

Median/Min/Max 6.595/3.752/7.888 6.744/4.159/7.448

IndSet1 and IndSet2. For the verification, the algorithm
called Effective Pairing Verification, abbreviated as II-
EffPair it is used. This verifies the existence of an
indirect linear correlation. Because the data sets IndSet1
and IndSet2 were not normal, the algorithm indicates
the calculus of R using the nonparametric Spearman
Coefficient of Correlation. As a result we obtain R=0.4261,
which suggests the existence of a positive correlation. We
considered appropriate to set the confidence interval for R
with the specific confidence level 95%. The 95% confidence
interval of R being [0.127, 0.654], with both bounds higher
than 0 indicates the existence of a positive correlation. As a
second verification, a statistical test was applied in order to
verify if R is statistically different from 0. This is formulated
as the hypothesis that there exists a positive correlation,
based on the fact that in our case R >0. It was considered
by the use of the test with a significance level αCorr =
0.05. The obtained result of the test was PvalCorr=0.002,
PvalCorr < αCorr , which indicated the existence of the
correlation (R is significantly different from zero). Based on
this, it could be formulated the conclusion that the pairing
(matching) can be considered effective. This also allows
the formulation of the conclusion that the problem-solving
intelligence behavior of the multiagent systems is indirectly
positively (R >0) correlated.

Based on the verification of the pairing assumption,
for the comparison and classification of the studied
CMASs intelligence, the two-sample Wilcoxon test for
paired data (matched pairs) with two-tails was applied.
The significance level was considered αClass=0.05. Some
additional calculus details are: the sum of all signed ranks
(W) =-1; the sum of positive ranks (T+) =430; the sum

of negative ranks (T-)=-431; the number of pairs=41;
the degrees of freedom=n-1=40. The obtained two-tailed
PvalClass was PvalClass=0.99; PvalClass>αClass (see
Step5 in the MeasApplInt algorithm). Based on this
condition, the decision is that H0ie can be accepted,
which confirms that COP i1 and COP i2 intelligence is
statistically the same. They solve problems with the same
intelligence. From classification point of view COP i1 and
COP i2 should be included in the same intelligence class.
The numerical difference of the two Central Intelligence
Tendency Indicators is the result of natural variability
in the intelligence of the studied CMASs. By repeating
the experimental evaluation, it could be obtained Central
Intelligence Tendency Indicators with slightly different
values, but from comparison point of view, the conclusion
will be the same related to their classification in intelligence
classes.

In the performed experimental setup, the two studied
CMASs were chosen based on the fact that in researches
presented in the scientific literature such systems are con-
sidered intelligent. This is the case of simple cooperating
agents who based on the efficient and flexible cooperation
has an emergent intelligence at the systems’ level. In such
a study, HE could be represented by a single human spe-
cialist that should take an easily decidable decision, related
to the type of the intelligence and its effective measuring.
The studied CMASs are the case of systems with a single
type of problem-solving intelligence. The measuring crite-
rion also is easy to establish based on the effective need
related to the necessary problem solving requirement. As
intelligence level measuring method it was chosen the best-
solution found during the search for the solution process.

Table 4 IndSet1 and IndSet2
data normality analysis results Normality test results

K-S Normality test

IndSet1 IndSet2

K-S Statistics/PvalNorm/Passed 0.141/≈0.039/No 0.152/≈0.018/No

S-W Normality test

IndSet1 IndSet2

S-W Statistics/PvalNorm/Passed 0.88/≈0/No 0.862/≈0/No
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Fig. 3 Normal Q-Q Plot of
IndSet1
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This is an indicator of the quality of the solution. Another
option that HE was possible to take consisting in intelli-
gence measuring based on two components measure, the

best-to-date solution found component and the problem-
solving time component. This second possible decision
influencing the obtained intelligence measure by applying

Fig. 4 Normal Q-Q Plot of
IndSet2
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the metric, being possible to give different evaluation result,
but this is based on what effectively HE need (what is
necessary effectively to be considered as the intelligence
measure).

For evaluation and validation of the proposed metric,
we conducted more experiments in that the CMASs were
used in solving some computational hard problems. In
another experimental study, we considered two CMASs
denoted as COP k1 and COP k2. COP k1 operated as an
Ant Colony System (ACS) [20, 31, 32]. COP k2 operated
as a Best-Worst Ant System (BWAS) [25, 26, 91]. ACS
was introduced by Dorigo and Gambardella [32]. BWAS
was proposed in [25]. By applying the MeasApplInt metric
to COP k1 and COP k2, it was obtained the result that
the two studied CMASs cannot be included in the same
class of intelligence. COP k2 intelligence being lower than
the COP k1 intelligence. From applicative point of view,
the obtained result should be interpreted that COP k1 can
solve more intelligently problems than COP k2. The results
of the performed experimental study are presented in the
Supplementary Material attached to the paper.

4.3 Experimental comparison of theMeasApplInt
andMetrIntPair metrics

In order to experimentally compare the MeasApplInt
and MetrIntPair [45] metrics, on the obtained paired
experimental problem-solving evaluation results presented
in the previous subsection, it was applied the MetrIntPair
metric. According to the MetrIntPair metric application
assumption, it was verified the IndSet1 and IndSet2
normality using the requested One-Sample Kolmogorov
Smirnov test [53] at the 0.05 significance level. The
previously presented Table 4 presents the obtained test
results. Based on the obtained results can be concluded
that IndSet1 and IndSet2 does not passed the normality
assumption. Based on this fact theMetrIntPair metric could
not be directly applied. It was opted for a preprocessing
step, consisting in the identification of outliers (extremely
high and low) problem-solving intelligence. The using
of Grubbs’ test for outliers detection [4] is suggested
when is expectable the normality after the elimination of
extreme values. Table 2 presents the identified outliers,
where “*” indicates an identified outlier, “#” indicates the
pair of an identified outlier. The number that follows “*”
specifies the application number of the test for outliers’

detection (first application, second application and so
one).

Let’s make the assignment IndSet1*= IndSet1 and
IndSet2*= IndSet2. First, it was applied the outliers’
detection test on IndSet1*. It identified Ind1n1[3.752]
as an outlier, which was deleted from IndSet1*,
IndSet1*=IndSet1

∗ − {Ind1n1}; based on the pairing
assumption it was deleted its pair Ind2n1[4.159] from
IndSet2*, IndSet2*=IndSet2

∗ − {Ind2n1}. Based on the
fact that it was obtained an outlier, the outlier detection test
was applied again on IndSet1*, identifying Ind1n4[4.513]
as a new outlier. It was deleted from IndSet1*, IndSet1

∗ =
IndSet1

∗ − {Ind1n4}; and deleted its pair Ind2n4[6.189]
from IndSet2

∗, IndSet2
∗ = IndSet2

∗ − {Ind2n4}. Con-
sidering recursively, the outliers’ detection test was applied
again on IndSet1*. This time, there was no any other outlier
detected. Now, the application of the outlier’s detection test
on IndSet2* began, identifying Ind2n2[4.717] as an out-
lier, Ind2n2 was eliminated from IndSet2*, IndSet2

∗ =
IndSet2

∗ − {Ind2n2}, based on the pairing property it
was deleted Ind2n2 pair Ind1n2[5.442] from IndSet1*,
IndSet1

∗ = IndSet1
∗ − {Ind1n2}.

On the newly obtained IndSet1* and IndSet2*,
obtained after the deletion of the extreme intelligence
values from IndSet1 and IndSet2, it was applied the
K-S normality test, with the obtained results presented in
Table 5. The obtained results indicates that both IndSet1*
and IndSet2* passed the normality assumption.

According to the next processing described in the
MetrIntPair metric, in order to make the classification of
the two studied CMASs, it was applied to the Paired Two-
Sample T-test [30]. By using the two two-tailed test at
the significance level αMip=0.05, the resulted P-value is
0.956. Based on the fact that the P-value > αMip it can
be concluded that the two studied systems have the same
problem-solving intelligence.

As a next step for validation purposes, the pairing
effectiveness was verified obtaining the correlation coef-
ficient R=0.3498. For the verification, if R is signifi-
cantly different from zero, a statistical significance test was
applied, which returned the PvalCorr=0.0157. The result of
PvalCorr<αCorr , indicates that effective pairing resulted
in a significant (with the 0.05 significance level considered)
correlation (pairing/matching appears to be effective).

The results obtained by theMeasApplInt andMetrIntPair
metrics on the same two studied and experimentally evalua-

Table 5 Normality analysis
results of IndSet∗1 and
IndSet∗2

Indicator IndSet∗1 IndSet∗2

K-S Statistics 0.086 0.091

PvalNorm ≈0.1 ≈0.1

Normality passed Yes Yes
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ted intelligent CMASs were the same. Both CMASs were
identified as having the same problem-solving intelligence
and is classified in the same class of intelligence.

5 Discussions

Based on comprehensive study of the scientific literature,
we conclude that it is impossible to give a general
accepted definition to the agent-based systems’ (agents
and cooperative multiagent systems) intelligence. Many
definitions of artificial systems’ intelligence presented in
the scientific literature are based on some biological (nature)
inspired considerations, like autonomous learning, self-
adaptation and evolution. In a CMAS, the intelligence
should be defined at the system’s level. Many studies [46,
93] prove that even in very simple CMASs the intelligence
could emerge at the system’s level if the member agents
cooperate efficiently and flexibly.

Most of the studies and researches focusing on the
CMASs does not give any evaluation measure to the
intelligence of the systems (how intelligent the investigated
system is). We consider that there is not enough to give just
a general definition to an agent-based system’s intelligence.
There are few results in the scientific literature related to
this important research topic of measuring the machine
intelligence. It is a real need to design effective metrics that
allows a calculus of a CMAS intelligence and also offer
the possibility to compare the intelligences of CMASs. We
consider that the machine intelligence is based on the ability
to solve difficult real-life problems. A designed intelligence
metrics must be able to measure such an intelligence level.

In our research, we focused on the study of intelli-
gence of CMASs. We measured the intelligence at the
level of the whole cooperative multiagent system, not at
individual/agent’s level. Our metric, presented in the form
of the algorithm MeasApplInt, is appropriate for CMASs,
where the difficult problem-solving intelligence of a CMAS
can be expressed as a single intelligence indicator. The
human evaluator who wishes to measure and to compare
the studied CMASs problem-solving intelligence should
accomplish the selection of the most appropriate type of
intelligence indicator. The type of intelligence indicator
illustrates an aspect that the human evaluator considers
that it characterizes the problem-solving intelligence. The
designed metric can be used to detect intelligence type
identified and selected by the human evaluator for the set
of problems used in the experimental intelligence evalu-
ations. This approach avoids the necessity to give a rig-
orous definition of the intelligence. In order to illustrate
this affirmation, we mention the flying drone scenario
presented in Section 3.1. In the considered scenario, the
swarm is either formed by autonomous flying drones, by

autonomous terrestrial drones (land vehicles), or, by com-
pletely autonomous flying and terrestrial drones. The swarm
could even comprise hybrid drones that have some kind
of autonomy, but it is not completely autonomous consi-
dering the fact that some coordinations could be made by
humans.

In our study, we considered the calculus of the
CentrIntTen, the indicator of the central intelligence
tendency, as the median of the problem-solving intelligence
evaluation’s results. This was based on the requested
robustness property of the metric (low sensitivity of the
metric to the sample intelligence indicator data property).
The median is a more robust indicator of the central
intelligence tendency than the mean in case of data that are
not normally distributed. A very high or very low numerical
value influences the value of the median in a lesser extent
than the mean’s value.

In the paper [45] the MetrIntPair metric able to measure
the machine intelligence of two CMASs was proposed.
MetrIntPair is able also to compare the studied systems
intelligence, and based on the comparison’s result to
make an accurate classification in classes of intelligence.
MeasApplInt metric presented in this paper represents an
improvement of the MetrIntPair metric from the robustness
point of view. MeasApplInt considers the same principle
of intelligence based on the real-life difficult problem-
solving ability, as the MetrIntPair metric, and it is based
on the same so-called pairwise/matched problem-solving
intelligence evaluations. MeasApplInt is able to measure
the machine intelligence, to compare and classify two
intelligent systems. A CMAS could manifest its intelligence
at a different level for different problems-solving. The
designed MeasApplInt metric takes into consideration the
variability in the intelligence of each of the compared
CMASs.

The novelty of MeasApplInt is based on the difference
in performed processing and analyses compared with
MetrIntPair. MetrIntPair is based on the assumption of
normality of the two intelligence indicators data sets,
obtained as problem-solving intelligence evaluation results
of the two studied CMASs. During the classification of the
two studied multiagent systems, in order to verify if they
belong to the same class of intelligence, MetrIntPair uses
the parametric Paired Two-Sample T-test [30]. The t-statistic
was introduced by William Gosset [10]. MeasApplInt
does not request the passing of the normality assumption.
This allows the principal advantage of robustness of
MeasApplInt versus MetrIntPair. The robustness is based
on the fact, that MeasApplInt for the classification of the
two studied multiagent systems uses the nonparametric
statisticalWilcoxon signed rank test for two paired data [24,
68, 69, 79, 87] and the Mann-Whitney test [35, 55].
The Wilcoxon’s test is the nonparametric analog of the



MeasApplInt - a novel intelligence metric

Paired Two-Sample T-test. In MeasApplInt algorithm, the
pairing/matching effectiveness is verified. The pairing
effectiveness has the significance that there is an indirect
correlation between the intelligence manifestations of the
compared CMASs. For measuring the pairing effectiveness,
the II-EffPair algorithm was proposed that is invoked by the
MeasApplInt algorithm. If the pairing assumption passes,
then theWilcoxon’s test is applied. If the pairing assumption
fails, then the Mann-Whitney test is applied instead of
Wilcoxon’s test. The Mann-Whitney test is robust based on
the fact that it does not request the passing of the assumption
of normality, but it has less statistical power to detect
differences than the Wilcoxon test. This is based on the fact
that it is not designed for paired data. The power of a test
of statistical significance is defined as the probability that
it will reject a false null hypothesis. The power denoted in
the following Pow can be calculated as Pow = 1 – β, where
β denotes the probability to make a type II error, that is, to
reject the alternative hypothesis when this is true.

We would like to mention that if a data set is sampled
from a Gaussian population, the nonparametric tests have
less power, especially with small sample sizes. Based on this
consideration, when the two intelligence indicator sample
sizes are small and the samples pass the assumption of
normality, we recommend the use of theMetrIntPair metric
instead of the MeasApplInt metric.

II-EffPair algorithm can be applied even separately
from the MeasApplInt metric for proving the indirectly
correlated intelligent behavior in the problems solving of
two studied CMASs. This represents in some extent the
characterization of the problems solving behavior of the
two studied CMASs. An indirect correlation indicates that
the manifestations in the intelligence of the two studied
intelligent systems is similar. In some cases, if for a
problem, one of the systems’ problem-solving intelligence
is measured, and the measurements indicate low(high)
intelligence, then it is expectable in some degree that the
other system solves the same(or very similar) problem with
similar low(high) intelligence also.

In the Section 4.3 an experimental comparison was
performed related to the MeasApplInt and MetrIntPair
metrics on the experimentally obtained problem solving
intelligence evaluation results presented in Section 4.2. The
results of the comparison and classification in the case of
both metrics were the same. The presented comparative
study illustrates the advantage of MeasApplInt versus the
MetrIntPair consisting of its increased robustness. The
comparative study presents a limitation of the MetrIntPair
metric consisting in the fact that for its application it was
necessary to identify and eliminate the extreme (low and
high) intelligence indicator values. This does not affect the
comparison and classification result but it altered the values

of the obtained central intelligence tendencies of the two
studied CMASs.

The MeasApplInt metric is universal, the applicability
is not restricted to the studied cooperative multiagent
systems architecture. It could be applied even for the
intelligence evaluation of individual agents. We would like
to emphasize that we use the universality notion with a
different significance than is used in some researches, see
for example [33], where the principle of metrics is used to
measure the intelligence of artificial systems and biological
life forms (humans for example) in the same extent.

6 Conclusions

Frequently, cooperative multiagent systems can solve
difficult real-life problems in a more efficient and flexible
way than the individual agents that operate in isolation.
Intelligent cooperative multiagent systems are used for
many real-life problem solving. Measuring the machine
intelligence is very important in order to enable the
differentiation between systems based on their problem-
solving intelligence. There is no standardization, or even an
universal assessment of what an intelligence metric should
measure.

There are very few metrics able to make an effec-
tive quantitative measuring, also allowing the comparison
of the systems and their classification into intelligence
classes. In this paper, we proposed a novel universal met-
ric called MeasApplInt that allows, in the same time,
measuring, comparison and classification into intelligence
classes of two studied intelligent CMASs. CMASs from
the same intelligence class have the same real-life problem-
solving intelligence. We consider that similarly to the
humans and other intelligent life forms (apes, dolphins),
the artificial intelligent systems have variability in intel-
ligence. MeasApplInt takes into account the intelligence
of the studied CMASs. The main advantage of MeasAp-
plInt metric versus the MetrIntPair metric [45] consists
in its robustness of the comparison of the intelligence of
two studied intelligent systems. To decrease the neces-
sary number of intelligence evaluations, and to allow the
formulation of trustful conclusion, the principle of intel-
ligence indicators data pairing/matching (making pairwise
intelligence evaluations) was applied in our approach.

Based on a comprehensive study of the scientific litera-
ture we consider that our proposed metric is novel and it will
represent the basis for intelligence comparison of coopera-
tive multiagent systems in many future researches. As exam-
ples of possible applications, we mention the measuring and
comparison of the intelligence of cooperative multiagent
systems that are specialized in difficult problems-solving,
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like: CMASs composed of flying drones with agent proper-
ties able to perform different missions like delivery of com-
manded products; CMASs composed of robotic agents able
to fulfill variety of missions in physical environments, like
search for different objects; CMASs composed of agents
that are able to autonomously or semi-autonomously pilot
specialized cars in transporting passengers.

We consider that some IBASs could have different types
of intelligence. An IBAS could be more intelligent than
another IBAS based on a specific type of intelligence, but
for another type of intelligence the situation could be the
vice versa. Our further research focuses on the proposal of
a theory of multiple intelligences in intelligent computing
systems. A sub-direction in this research consists in the
automatic identification of the types of intelligence detained
by intelligent systems.
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real-life problems with a high intelligence

Appendix. Additional experimental evaluation of
MeasApplInt metric

L.B. Iantovics · L. Kovács · C. Rotar

Experimental evaluation of MeasApplInt metric for two CMASs

COP i1 and COP i2 cooperative multiagent systems studied in Subsection 4.2
proved that both of them belong to the same intelligence level. Based on this
fact they were classified in the same intelligence class. From the viewpoint
of practical applications, this result means that COP i1 and COP i2 are able
to solve problems with the same intelligence. In this additional experimental
study we present two CMASs whose problem-solving intelligence level is dif-
ferent and based on this fact they cannot be classified in the same intelligence
class.

In the following, we present the experimental evaluation study of the pro-
posed MeasApplInt metric to evaluate two CMASs denoted as COPk1 and
COPk2. The cooperative problem solving by COPk1 and COPk2 is similar to
the cooperative problem solving performed by the CMASs studied in Subsec-
tion 4.2. We take the sTSP optimisation task similar to the problem presented
in Subsection 4.1. The human evaluator used the same problem-solving in-
telligence indicator measure as we have presented in the experimental study
described in Subsection 4.2. It can be mentioned that lower intelligence indi-
cator value means higher intelligence.

In COPk1, we have implemented an Ant Colony optimization engine based
on the Ant Colony System (ACS) [32, 20, 31]. Applications of ACS include
among others: assembly sequence planning based on connector concept [94],
solving single source capacitated facility location problem [95] and GPS posi-
tioning networks design [96]. COPk2 involves Best-Worst Ant System (BWAS)
[25, 26, 91] engine for the optimization. Applications of BWAS include: train
operation daily schedule [97] and quadratic assignment problems [98]. The
comparison tests were performed on maps of nr=50 cities. The parameter val-
ues for the studied CMASs where the same as in the experimental study pre-
sented in Subsection 4.2. Repetitions=1200; α=1.738; β=2.085 and ρ=0.163.
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Table A. Intelligence evaluation results of the COPk1 and COPk2

IndSetA IndSetB

IndAn1[5716] IndBn1[8430]
IndAn2[7203] IndBn2[9519]
IndAn3[6835] IndBn3[9351]
IndAn4[7330] IndBn4[9198]
IndAn5[3140] IndBn5[5955]
IndAn6[6539] IndBn6[9546]
IndAn7[6329] IndBn7[8087]
IndAn8[6679] IndBn8[8719]
IndAn9[6739] IndBn9[9560]
IndAn10[6501] IndBn10[10110]
IndAn11[6676] IndBn11[8128]
IndAn12[6429] IndBn12[9124]
IndAn13[6483] IndBn13[9098]
IndAn14[6298] IndBn14[9521]
IndAn15[7307] IndBn15[10210]
IndAn16[4696] IndBn16[7633]
IndAn17[6445] IndBn17[9441]
IndAn18[7035] IndBn18[9213]
IndAn19[6127] IndBn19[9310]
IndAn20[6650] IndBn20[9392]
IndAn21[7111] IndBn21[10330]
IndAn22[6992] IndBn22[10560]
IndAn23[6150] IndBn23[8872]

Fig. A Graphical representation of IndSetA and IndSetB

Based on the specificity of the proposed metric there were performed paired ex-
perimental problem-solving intelligence evaluations for |DifPr |=23 problems.
IndSetA denotes the experimental problem-solving intelligence evaluation re-
sults for COPk1. IndSetB denotes the experimental problem-solving intelli-
gence evaluation results for COPk2. Table A and Figure A present the obtained
IndSetA and IndSetB data sets.

Table B presents the results of the performed statistical characterization
of IndSetA and IndSetB as indicated in the first step of the Robust CMASs
Intelligence Measuring, Comparison and Classification algorithm. For the cal-
culation of the confidence interval of the mean, we used the setting CL=95%.
The selected CV values of IndSetA and IndSetB indicate a moderate relative
homogeneity. CentrIntA =Median(IndAn1, IndAn2, . . . , IndAnk). CentrIntB
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Table B. Results obtained by analyzing IndSetA and IndSetB

Type of analysis IndSetA IndSetB

Mean/SEM 6409.13/190.18 9100.3/206.86
[LowerCI,UpperCI] [6014.7, 6803.6] [8671.3, 9529.3]
SD/Variance 912.07/831871.7 992.05/984163.2
CV/Interpretation 14.2/rel-hom. 10.9/rel-hom.
|DifPr|/Median 23/6539 23/9310
Min/Max 3140/7330 5955/9310

Table C. IndSetA and IndSetB data normality analysis results

Normality test results K-S Normality test
IndSetA IndSetB

K-S Statistics/PvalNorm 0.248/0.0007 0.195/0.0238
Norm. Passed No No

S-W Normality test
IndSetA IndSetB

S-W Statistics/PvalNorm 0.745/≈0 0.885/0.013
Norm. Passed No No

Fig. B. Q-Q Plot of IndSetA

=Median(IndBn1, IndBn2, . . . , IndBnk). CentrIntA, CentrIntA=6539, repre-
sents the calculated central intelligence tendency of COPk1. CentrIntB, Cen-
trIntB=9310, represents the calculated central intelligence tendency of COPk2.

Table C presents the results of the performed normality tests One-sample
Kolmogorov-Smirnov test (K-S test) and Shapiro-Wilk test (S-W test) applied
to IndSetA and IndSetB data sets. Both of them were applied with the sig-
nificance level αNorm=0.05 considered the most appropriate in most of the
cases. PvalNorm denotes the P-value of the performed normality test. Figures
B and C presents the Q-Q Plot of IndSetA and IndSetB appropriate for the
visual analysis of the normality. The obtained normality test results presented
in Table C, and the visual representation of Figures B and C, shows that none
of the intelligence indicator data sets IndSetA or IndSetB does not pass the
normality assumption.

As a next step, it was applied the Effective Pairing Verification algorithm
for the verification of the pairing effectiveness. Based on the fact that IndSetA
and IndSetB were not normally distributed, according to the algorithm it was
calculated the nonparametric Spearman coefficient of correlation denoted as
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Fig. C. Q-Q Plot of IndSetB

R. The R-value by R=0.574 suggests the existence of a positive correlation.
During the verification, if R is significantly different from zero a statistical
significance test it was applied. In the tests, we set the significance level to
αCorr=0.05. The PvalCorr=0.0021, obtained as one-tailed P-value of the sta-
tistical test shows the existence of a positive correlation, which indicates an
effective pairing (matching) of the obtained experimental problem-solving in-
telligence evaluation results of the studied CMASs. The conclusion is coming
from the fact that PvalCorr value is lower then αCorr. Also, it was calculated
the confidence interval of R using the confidence level by 95% that in most
of the cases is the most appropriate. The obtained confidence interval was
by [0.1996, 0.8023]. The fact that both limits of the confidence interval are
positive numbers, leads to the same conclusion as the previously mentioned
significance test related to the effectiveness of the pairing.

According to the Robust CMASs Intelligence Measuring, Comparison and
Classification algorithm for performing the comparison of the studied CMASs
intelligence and their classification in intelligence classes it was applied the non-
parametric two-sample Wilcoxon test for two paired samples with the signifi-
cance level αClass=0.05. As the test result, it was obtained PvalClass≈0.0001
(the obtained P-value of the Wilcoxon test). PvalClass < αClass, indicates a
statistically significant difference between the intelligence level of COPk1 and
COPk2. However, COPk1 and COPk2 cannot be classified in the same intel-
ligence class. COPk1 having higher problem-solving intelligence than COPk2

(conclusion formulated based on the fact that CentrIntA value is lower then
the CentrIntB value; lower value indicating higher intelligence).
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